Skip to main content
Log in

Isotopic compositions of C, O, Sr, and S and problem of ages of the Katera and Uakit Groups, western Transbaikal region

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The age of the Katera Group, which occupies a large area in the western North Muya Range and occurs 100–150 km east of the Uakit Group, is a debatable issue. Based on geological correlations with reference sections of the Baikal Group and Patom Complex, the Katera and Uakit groups were previously considered nearly coeval units and assigned to Late Precambrian (Khomentovskii and Postnikov, 2002; Salop, 1964). This was supported partly by the Sm–Nd model datings (Rytsk et al., 2007, 2009, 2011). Finds of the Paleozoic flora substantiated the revision of age of the Uakit Group and its assignment to the Late Devonian–Early Carboniferous (Gordienko et al., 2010; Minina, 2003, 2012, 2014). We have established that Sr and C isotopic compositions in carbonates of these groups differ drastically, as suggested by their different ages. Sediments of the Nyandoni Formation (Katera Group), which contains carbonates characterized by minimum values of 87Sr/86Sr = 0.7056 and maximum values of δ13C = 4.9‰, were accumulated in the first half of Late Riphean (800–850 Ma ago), whereas the overlying Barguzin Formation (87Sr/86Srmin = 0.70715, δ13Cmax= 10.5‰) was deposited at the end of Late Riphean (700–750 Ma). Judging from the isotope data, the Nerunda Formation (Uakit Group), which contains carbonates with characteristics matching the most rigorous criteria of fitness for the chemostratigraphic correlation (Sr content up to 4390 μg/g, Mn/Sr < 0.1, δ18O = 23.0 ± 1.8‰), was deposited at the end of Vendian ~550–540 Ma ago). The sequence includes thick typical carbonate horizons with very contrast carbon isotopic compositions: the lower unit has anomalous high δ13C values (5.8 ± 1.0‰); the upper unit, by anomalous low δ13C values (–5.2 ± 0.5‰]). Their Sr isotopic composition is relatively homogeneous (87Sr/86Sr = 0.7084 ± 0.0001) that is typical of the Late Vendian ocean. The S isotopic composition of pyrites from the Nyandoni Formation (Katera Group) (δ34S = 14.1 ± 6.8‰) and pyrites from the Mukhtunny Formation (Uakit Group) (δ34S = 0.7 ± 1.4‰) does not contradict the C and Sr isotopic stratigraphic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antipin, V.S., Pokrovsky, B.G., and Fedorov, A.M., Formation of the Patom Crater by phreatic explosion: Geological and isotope geochemical evidence, Lithol. Miner. Resour., 2015, no. 6, pp. 478–487.

    Article  Google Scholar 

  • Becker, R.T., Gradstein, F.M., and Hammer, O., The Devonian Period, The Geologic Time Scale, 2012, ch. 22, pp. 559–601.

    Chapter  Google Scholar 

  • Butov, Yu.P., Finds of the Cambrian fauna in the central South Muya Range (western Transbaikal region), Izv. Akad. Nauk SSSR, Ser. Geol., 1972, no. 11, pp. 151–153.

    Google Scholar 

  • Canfield, D.E. and Farquhar, J., Animal evolution, bioturbation, and the sulfate concentration of the oceans, Proc. Nat. Acad. Sci., 2009, vol. 106, pp. 8123–8127.

    Article  Google Scholar 

  • Chumakov, N.M., Late Proterozoic African glacial era, Stratigr. Geol. Correlation, 2011, vol. 19, no. 1, pp. 1–20.

    Article  Google Scholar 

  • Chumakov, N.M., Kapitonov, I.N., Semikhatov, M.A., et al., Vendian age of the upper part of Patom Complex in Middle Siberia: U/Pb LA-ICP MS dates of detrital zircons from the Nikol’skoe and Zherba formations, Stratigr. Geol. Correlation, 2011, vol. 18, no. 2, pp. 233–237.

    Article  Google Scholar 

  • Chumakov, N.M., Semikhatov, M.A., and Sergeev, V.N., Vendian reference sections of southern Middle Siberia, Stratigr. Geol. Correlation, 2013, vol. 21, no. 4, pp. 359–382.

    Article  Google Scholar 

  • Gladkochub, D.P., Nicoll, G., Stanevich, A.M., et al., Age and sources of Late Precambrian sedimentary sequences of the southern Baikal region: Results of the U–Pb LA-ICP MS dating of detrital zircons, Dokl. Earth Sci., 2013, vol. 450, no. 3, pp. 494–498.

    Article  Google Scholar 

  • Gordienko, I.V., Bulgatov, A.N., Ruzhentsev, S.V., et al., Evolution of the Uda–Vitim island-arc system in the Transbaikal sector of the Paleoasian Ocean in the Late Riphean–Paleozoic, Geol. Geofiz., 2010, vol. 51, no. 5, pp. 589–614.

    Google Scholar 

  • Halverson, G.P., Wade, B.P., Hurtgen, M.T., and Barovich, K.M., Neoproterozoic chemostratigphy, Precambrian Res., 2010, vol. 182, pp. 337–350.

    Article  Google Scholar 

  • Izokh, O.P. Izokh, N.G, Ponomarchuk, V.A., and Semenova, D.V., C and O isotopes in rocks of the Frasnian–Famennian section in the Kuznetsk basin (southern West Siberia), Geol. Geofiz., 2009, vol. 50, no. 7, pp. 788–797.

    Google Scholar 

  • Kaufman, A.J., Knoll, A.H., Semikhatov, M.A., et al., Integrated chemostratigraphy of Proterozoic-Cambrian boundary beds in the western Anabar region, northern Siberia, Geol. Mag., 1996, vol. 133, no. 5, pp. 509–533.

    Article  Google Scholar 

  • Khabarov, E.M. and Ponomarchuk, V.A., Carbon isotopes in Upper Riphean rocks of the Baikal Group, Geol. Geofiz., 2005, vol. 46, no. 10, pp. 1019–1037.

    Google Scholar 

  • Khomentovskii, V.V., The Baikalian in Siberia (850–650Ma), Geol. Geofiz., 2002, vol. 43, no. 4, pp. 313–333.

    Google Scholar 

  • Khomentovskii V.V. and Postnikov A.A. The Neoproterozoic evolution of the Baikal–Vilyui branch of the Paleoasian Ocean, Geotectonics, 2002, no. 3, pp. 3–21.

    Google Scholar 

  • Kirmasov, A.B., Klochko, A.A., Bozhko, N.A., and Minina, O.R., Tectonics of the Uakit zone (Baikal region): Paleodynamics of inner regions of the Baikal orogenic zone. General issues of tectonics. Tectonics of Russia, in Materialy XXXIII Tektonicheskogo soveshchaniya (Materials of the 33rd Tectonic Conference), Moscow: GEOS, 2000, pp. 205–207.

    Google Scholar 

  • Kochnev, B.B., Pokrovsky, B.G., Novozhilova, N.V., and Karlova, G.A., The Lower Cambrian boundary in the central Siberian Platform: New isotope-geochemical and paleontological data, in Nedropol’zovanie. Gornoe delo. Napravleniya i tekhnologii poiska, razvedki i razrabotki mestorozhdenii poleznykh iskopaemykh. Geoekologiya (Subsurface Management. Mining. Directions and Technologies for the Prospecting and Exploitation of Mineral Resources. Geoecology), Novosibirsk, 2014, vol. 1, pp. 62–66.

    Google Scholar 

  • Kuznetsov, A.B. and Letnikova, U.F., Opening of the Baikal branch of the Paleoasian Ocean: Sr and C isotope data, in Tektonika zemnoi kory i mantii. Tektonicheskie zakonomernosti razmeshcheniya poleznykh iskopaemykh (Tectonics of the Earth’s Crust and Mantle: Tectonic Regularities in the Distribution of Mineral Resources), Moscow: GEOS, 2005, vol. 1, pp. 352–355.

    Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., Gorokhov, I.M., et al., Sr isotope composition in carbonates of the Karatau Group, southern Urals, and standard curve of 87Sr/86Sr variations in the Late Riphean Ocean, Stratigr. Geol. Correlation, 2003, vol. 11, pp. 415–449.

    Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., Maslov, A.V., et al., New data on Sr- and S-isotopic chemostratigraphy of the Upper Riphean type section (southern Urals), Stratigr. Geol. Correlation, 2006, vol. 14, no. 6, pp. 602–628.

    Article  Google Scholar 

  • Kuznetsov, A.B., Semikhatov, M.A., and Gorokhov, I.M., The Sr isotopic composition of the World Ocean, marginal and island seas: Implications for the Sr isotope stratigraphy, Stratigr. Geol. Correlation, 2012, vol. 20, no. 6, pp. 501–515.

    Article  Google Scholar 

  • Kuznetsov, A.B., Ovchinnikova, G.V., Gorokhov, I.M., et al., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb–Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51–66.

    Article  Google Scholar 

  • Le Guerroue, E., Allen, P.A., Cozzi, A., et al., 50 myr recovery from the largest negative δ13С excursion in the Ediacaran ocean, Terra Nova, 2006, vol. 18, pp. 147–153.

    Article  Google Scholar 

  • Le Guerroue, E. and Cozzi, A., Veracity of Neoproterozoic negative C-isotope values: the termination of the Shuram negative excursion, Gondwana Res., 2010, vol. 17, pp. 653–661.

    Article  Google Scholar 

  • Leonov, M.V. and Rud’ko, S.V., Finding of the Ediacaran–Vendian fossils in the Far Taiga deposits, Patom Highlands, Stratigr. Geol. Correlation, 2012, vol. 20, no. 5, pp. 497–500.

    Article  Google Scholar 

  • Li D., Linga H-F., Shields-Zhou G.A., et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan section, NE Yunnan, South China, Precambrian Res. 2013, vol. 225, pp. 128–147.

    Article  Google Scholar 

  • Magaritz, M., Holser, W.T., and Kirschvink, J.L., Carbonisotope events across the Precambrian/Cambrian boundary on the Siberian Platform, Nature, 1986, vol. 258–259.

    Google Scholar 

  • McArthur, J.M., Howarth, R.J., and Shields, G.A., Strontium isotope stratigraphy, in The Geologic Time Scale, 2012, ch. 7, pp. 127–144.

    Chapter  Google Scholar 

  • Melezhik, V.A., Fallick, A.E., and Pokrovsky, B.G., Enigmatic nature of thick sedimentary carbonates depleted in 13C beyond the canonical mantle value: the challenges to our understanding of the terrestrial carbon cycle, Precambrian Res., 2005, vol. 137, pp. 131–165.

    Article  Google Scholar 

  • Melezhik, V.A., Pokrovsky, B.G., Fallick, A.E., et al., Constraints on 87Sr/86Sr of late Ediacaran seawater: insight from Siberian high-Sr limestones, J. Geol. Soc., 2009, vol. 166, pp. 183–191.

    Article  Google Scholar 

  • Minina, O.R., Stratigraphy and miospore complexes in Upper Devonian rocks of the Sayan–Baikal mountain region, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Irkutsk: IZK SO RAN, 2003.

    Google Scholar 

  • Minina, O.R., The Devonian in the western Transbaikal region: History of the identification of Middle Paleozoic sedimentary complexes, in Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu) (Geodynamic Evolution of Lithosphere in the Central Asian Mobile Belt: From Ocean to Continent), Irkutsk: IZK SO RAN, 2012, vol. 2, pp. 19–22.

    Google Scholar 

  • Minina, O.R., Early Hercynides of the Baikal–Vitim orogenic system: Composition, structure, and geodynamic evolution, Extended Abstract of DSc (Geol.–Miner.) Dissertation, Irkutsk: GIN SO RAN, 2014.

    Google Scholar 

  • Moczydlowska, M. and Nagovitsin, K.E., Ediacaran radiation of organic-walled microbiota recorded in the Ura Formation, Patom Uplift, East Siberia, Precambrian Res., 2012, vol. 198-199, pp. 1–24.

    Article  Google Scholar 

  • Pokrovsky, B.G. and Vinogradov, V.I., Sr, O, and C isotopic compositions in Upper Precambrian carbonates of the Anabar Uplift, Dokl. Akad. Nauk, 1991, vol. 320, pp. 1245–1250.

    Google Scholar 

  • Pokrovsky, B.G. and Missarzhevskii, V.V., Isotope correlation of Precambrian/Cambrian boundary sequences in the Siberian Platform, Dokl. Akad. Nauk, 1993, vol. 329, no. 6, pp. 768–771.

    Google Scholar 

  • Pokrovsky, B.G., Proterozoic–Paleozoic boundary: Isotope anomalies of the Siberian Platform sections and global environmental changes, Lithol. Miner. Resour., 1996, no. 4, pp. 333–347.

    Google Scholar 

  • Pokrovsky, B.G. and Bujakaite, M.I., Geochemistry of C, O, and Sr isotopes in the Neoproterozoic carbonates from the southwestern Patom paleobasin, southern Middle Siberia, Lithol. Miner. Resour., 2015, no. 2, pp. 144–169.

    Article  Google Scholar 

  • Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, oxygen, strontium, and sulfur isotopic compositions in Late Precambrian rocks of the Patom Complex, Central Siberia: Communication 1. Results, isotope stratigraphy, and dating problems, Lithol. Miner. Resour., 2006, no. 5, pp. 450–474.

    Article  Google Scholar 

  • Ruzhentsev, S.V., Minina, O.R., Nekrasov, G.E., et al., The Baikal–Vitim fold system: Structure and geodynamic evolution, Geotectonics, 2012, no. 2, pp. 87–110.

    Article  Google Scholar 

  • Rytsk, E.Yu., Kovach, V.P., Yarmolyuk, V.V., and Kovalenko, V.I., Isotopic provinces and formation stages of the continental crust in the Baikal–Muya belt: Sm–Nd isotopic evidence for granitic and silicic volcanic rocks, Dokl. Earth Sci., 2007, vol. 416, no. 3, pp. 1100–1104.

    Article  Google Scholar 

  • Rytsk, E.Yu., Kovach, V.P., Makeev, A.F., et al., The eastern boundary of the Baikal collisional belt: Geological, geochronological, and Nd isotope data, Geotectonics, 2009, no. 4, pp. 264–273.

    Article  Google Scholar 

  • Rytsk, E.Yu., Kovach, V.P., Yarmolyuk, V.V., et al., Isotopic signature and evolution of the continental crust in the east Transbaikalian segment of the Central Asian foldbelt, Geotectonics, 2011, no. 5, pp. 349–377.

    Article  Google Scholar 

  • Salop, L.I., Geologiya Baikal’skoi gornoi oblasti (Geology of the Baikal Mountain Region), Moscow: Nedra, 1964, vol. 1.

    Google Scholar 

  • Saltzman, M.R. and Thomas, E., Carbon isotope stratigraphy, in The Geologic Time Scale, 2012, ch. 11, pp. 2017–232.

    Google Scholar 

  • Sergeev, V.N., Knoll, A.H., and Vorob’eva, N.G., Ediacaran microfossils from the Ura Formation, Baikal-Patom Uplift, Siberia: taxonomy and biostratigraphic significance, J. Paleontol., 2011, vol. 85, no. 5, pp. 987–1011.

    Article  Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., et al., 87Sr/86Sr, δ13С and δ18О evolution of Phanerozoic seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.

    Article  Google Scholar 

  • Winkler, H.G.F., Die Genese der Metamorphen Gesteine, Springer: Berlin, 1967. Translated under the title Genezis metamorficheskikh porod, Moscow: Nedra, 1979.

    Book  Google Scholar 

  • Xu B., Gu Z., Wang C., et al., Carbon isotopic evidence for the associations of decreasing atmospheric CO2 level with the Frasnian-Famennian mass extinction, J. Geophys. Res., 2012, vol. 117, p. G01032.

    Google Scholar 

  • Yazmir, M.M., Dalmatov, B.A., and Yazmir, I.K., Atlas fauny i flory paleozoya i mezozoya Buryatskoi ASSR. Paleozoi (Atlas of Paleozoic and Mesozoic Fauna and Flora in Buryatia: The Paleozoic), Moscow: Nedra, 1975.

    Google Scholar 

  • Zhou C. and Xiao S., Ediacaran δ13С chemostratigraphy of South China, Chem. Geol., 2007, vol. 89, pp. 89–108.

    Article  Google Scholar 

  • Zhu, M., Strauss, H., and Shields, G.A., From snowball Earth to the Cambrian bioradiation: calibration of Ediacaran-Cambrian Earth history of South China, Palaeogeogr. Palaeoclimat. Palaeoecol., 2007a, vol. 254, no. 1/2, pp. 1–6.

    Article  Google Scholar 

  • Zhu M., Zhang J., and Yang A., Integrated Ediacaran (Sinian) chronostratigraphy of South China, Palaeogeogr. Palaeoclimat. Palaeoecol., 2007b, vol. 254, no. 1/2, pp. 7–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Pokrovsky.

Additional information

Original Russian Text © B.G. Pokrovsky, M.I. Bujakaite, 2016, published in Litologiya i Poleznye Iskopaemye, 2016, No. 4, pp. 307–328.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokrovsky, B.G., Bujakaite, M.I. Isotopic compositions of C, O, Sr, and S and problem of ages of the Katera and Uakit Groups, western Transbaikal region. Lithol Miner Resour 51, 262–282 (2016). https://doi.org/10.1134/S0024490216040076

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490216040076

Navigation