Skip to main content
Log in

Glaciogenic and related sedimentary rocks: Main lithochemical features. Communication 2. The Paleozoic and Cenozoic

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

Lithochemical features of the Early-Late Paleozoic and Cenozoic glaciogenic and related sedimentary rocks around the world are considered. Comparison of the bulk chemical composition of diamictites with the average Post-Archean Australian Shale (PAAS) revealed that the diamictites do not show any lithochemical characteristics unambiguously indicating their formation under cool climatic conditions. The chemical index of alteration (CIA) often used in the paleoclimatic reconstructions should be considered as additional (though very important) tool, because it is controlled by local factors. Taking into account these facts, there are likely no grounds to expect that the amount of the redeposited sedimentary material in the Late Paleozoic and Cenozoic glaciogenic rocks is more than in their Early Proterozoic and Late Riphean-Vendian analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangert, B., Stollhofen, H., Lorenz, V., and Armstrong, R., The Geochronology and Significance of Ash-Fall Tuffs in the Glaciogenic Carboniferous-Permian Dwyka Group of Namibia and South Africa, J. Afr. Earth Sci., 1999, vol. 29, pp. 33–49.

    Article  Google Scholar 

  • Bardin, V.I., Composition of East Antarctic Moraines and Some Problems of Cenozoic History, Third Symposium on Antarctic Geology and Geophysics, Craddock, C., Ed., Madison: The University of Wisconsin Press, 1982, pp. 1069–1076.

    Google Scholar 

  • Birkenmajer, K., Cenozoic Glacial History of the South Shetland Islands and Northern Antarctic Peninsula, in Geologia de la Antartida Occidental, Lopez-Martinez, J., Ed., Salamanca, 1992, pp. 251–260.

  • Brady, H. and McKelvey, B., Some Aspects of the Cenozoic Glaciation of Southern Victoria Land, Antarctica, J. Glaciology, 1983, vol. 29, pp. 343–349.

    Google Scholar 

  • Breza, J.R. and Wise, S.W., Lower Oligocene Ice-Rafted Debris on the Kerguelen Plateau: Evidence for East Antarctic Continental Glaciation, Proc. ODP. Sci. Results, College Station, 1992, vol. 120, pp. 161–178.

    Google Scholar 

  • Catuneanu, O., Hancox, P.J., and Rubidge, B.S., Reciprocal Flexural Behaviour and Contrasting Stratigraphies: A New Basin Development Model for the Karoo Retroarc Foreland System, South Africa, Basin Res., 1998, vol. 10, pp. 417–439.

    Article  Google Scholar 

  • Chumakov, N.M., Klimat i klimaticheskaya zonal’nost’ permi i rannego triasa, in Klimat v epokhi krupnykh biosfernykh perestroek, Semikhatov, M.A. and Chumakov, N.M., Eds., Moscow: Nauka, 2004.

    Google Scholar 

  • Chumakov, N.M., Lednikovyi i bezlednikovyi klimat v dokembrii, in Klimat v epokhi krupnykh biosfernykh perestroek, Semikhatov, M.A. and Chumakov, N.M., Eds., Moscow: Nauka, 2004.

    Google Scholar 

  • Cole, D.I., Evolution and Development of the Karoo Basin, in Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa, De Wit, M.J. and Ransome, I.G.D., Eds., 1992, pp. 87–99.

  • Dingle R.V. and Lavelle M., Late Cretaceous-Cenozoic Climatic Variations of the Northern Antarctic Peninsula: New Geochemical Evidence and Review, Palaeogeogr., Palaeoclimat., Palaeoecol., 1998, vol. 141, pp. 215–232.

    Article  Google Scholar 

  • Dingle, R.V., McArthur, J.M., and Vroon P., Oligocene and Pliocene Interglacial Events in the Antarctic Peninsula Dated Using Strontium Isotope Stratigraphy, J. Geol. Soc., 1997, vol. 154, pp. 257–264.

    Article  Google Scholar 

  • Earth’s Pre-Pleistocene Glacial Record, Hambrey, M.J., Harland, W.B., Chumakov, N.M., et al., Eds., Cambridge: Cambridge Univ. Press, 1981, p. 1004.

    Google Scholar 

  • Ehrmann, W.U., Implications of Sediment Composition on the Southern Kerguelen Plateau for Paleoclimate and Depositional Environment, Proc. ODP. Sci. Results, 1991, vol. 119, pp. 185–203.

    Google Scholar 

  • Ehrmann, W.U. and Mackensen, A., Sedimentological Evidence for the Formation of an East Antarctic Ice Sheet in Eocene/Oligocene Time, Palaeogeogr. Palaeoclimat. Palaeoecol., 1992, vol. 93, pp. 85–112.

    Article  Google Scholar 

  • Ehrmann, W., Bloemendal, J., Hambrey, M., et al., Variations in the Composition of the Clay Fraction of the Cenozoic Pagodroma Group, East Antarctica: implications for determining provenance, Sediment. Geol., 2003, vol. 161, pp. 131–152.

    Article  Google Scholar 

  • Eyles, C.H., Eyles, N., and Franca, A.B., Glaciation and Tectonics in an Active Intracratonic Basin: The Late Palaeozoic Itararé Group, Paraná Basin, Brazil, Sedimentology, 1993, vol. 40, pp. 1–25.

    Article  Google Scholar 

  • Fedorov, Yu.N., Maslov, A.V., Alekseev, V.P., et al., Sistematika redkozemel’nykh i ryada elementov-primesei v porodakh yury Severo-Pokachevskogo mestorozhdeniya (Shirotnoe Priob’e), Gornye Vedomosti, 2007, no. 12, pp. 24–37.

  • Geiger, M., The Geology of the Southern Warmbad Basin Margin — Tephrostratigraphy, Age, Fossil Record and Sedimentary Environment of Carboniferous-Permian Glacigenic Deposits of the Dwyka Group, Zwartbas, Southern Namibia, Würzburg: Julius-Maximilians-Universitát, 2000.

    Google Scholar 

  • Gibson, E.K., Wentworth, S.J., and McKay, D.S., Chemical Weathering and Diagenesis of a Cold Desert Soil from Wright Valley, Antarctica: An anolog of Martian Weathering Processes, J. Geophys. Res., 1983, vol. 88(Suppl.), pp. A912–A928.

    Article  Google Scholar 

  • Grazhdankin, D.V., Podkovyrov, V.N., and Maslov, A.V., Paleoclimatic Settings of the Formation of Upper Vendian Rocks on the Belomorian-Kuloi Plateau (Southeastern White Sea Region), Litol. Polezn. Iskop., 2005, no. 3, pp. 267–280 [Lithol. Miner. Resour. (Engl. Transl.), 2005, no. 3, pp. 232–244].

  • Hambrey, M.J., Barrett, P.J., Cenozoic Sedimentary and Climatic Record from the Ross Sea Region, Antarctica, in The Antarctic Paleoenvironment: A Perspective on Global Change, Kennett, J.P. and Warnke, D.A, Eds., Washington, DC: Am. Geophys. Union, 1993, part 2.

    Google Scholar 

  • Hambrey, M.J. and McKelvey, B., Major Neogene Fluctuations of the East Antarctic Ice Sheet: Stratigraphic Evidence from the Lambert Glacier Region, Geology, 2000a, vol. 28, pp. 865–960.

    Article  Google Scholar 

  • Hambrey, M.J. and McKelvey, B., Neogene Fjordal Sedimentation on the Western Margin of the Lambert Graben, East Antarctica, Sedimentology, 2000b, vol. 47, pp. 577–608.

    Article  Google Scholar 

  • Huber, H., Koeberl, C., McDonald, I., and Reimold, W.U., Geochemistry and Petrology of Witwatersrand and Dwyka diamictites from South Africa: Search for an Extraterrestrial Component, Geochim. Cosmochim. Acta, 2001, vol. 65, pp. 2007–2016.

    Article  Google Scholar 

  • Jonkers, H.A., Lirio, J.M., Del Valle, R.A., and Kelley, S.P., Age and Environment of Miocene-Pliocene Glaciomarine Deposits, James Ross Island, Antarctica, Geol. Mag., 2002, vol. 139.

  • Junttila, J., Ruikka, M., and Strand, K., Clay-Mineral Assemblages in High-Resolution Plio-Pleistocene Interval at ODP Site 1165, Prydz Bay, Antarctica, Global Planet. Change, 2005, vol. 45, pp. 151–163.

    Article  Google Scholar 

  • Kasting, J.F., Theoretical Constraints on Oxygen and Carbon Dioxide Concentrations in the Precambrian Atmosphere, Precambr. Res., 1987, vol. 34, pp. 205–229.

    Article  Google Scholar 

  • Kasting, J.F. Earth’s Early Atmosphere, Science, 1993, vol. 259, pp. 920–926.

    Google Scholar 

  • Kennett, J.P., Cenozoic Evolution of Antarctic Glaciation, the Circum-Antarctic Ocean, and Their Impact on Global Paleoceanography, J. Geophys. Res., 1977, vol. 82, pp. 3843–3860.

    Article  Google Scholar 

  • Loring, D.H. and Asmund, G., Geochemical Factors Controlling Accumulation of Major and Trace Elements in Greenland Coastal and Fjord Sediments, Environ. Geol., 1996, vol. 28, pp. 2–11.

    Article  Google Scholar 

  • Marchant, J.W. and Moore, A.E., Geochemistry of the Table Mountain Group: II. Analysis of Two Suites of Western Graafwater Rocks, Trans. Geol. Soc. S. Afr., 1978, vol. 81, pp. 353–359.

    Google Scholar 

  • Maslov, A.V., Glaciogenic and Associated Sedimentary Rocks: Main Features of Lithochemistry. Communication 1. Late Archean and Proterozoic, Litol. Polezn. Iskop., 2010, no. 4, pp. 355–370 [Lithol. Miner. Resour. (Engl. Transl.), 2010, no. 4, pp. 333–346].

  • Maslov, A.V. and Alekseev, V.P., Specific Features of the Chemical Composition and REE-Th-Sc Systematics of the Lower Mesozoic Fine-Grained Terrigenous Rocks in the Shaim Petroliferous Region (West Siberia), Izv. Vyssh. Uchebn. Zaved., Geol. Razved., 2007, no. 2, pp. 21–30.

  • Maslov, A.V., Ronkin, Yu.L., Krupenin, M.T., et al., Lower Riphean Fine-Grained Alumosiliciclastic Sedimentary Rocks of the Bashkirian Anticlinorium in the Southern Urals: Composition and Evolution of Provenances, Geokhimiya, 2004a, no. 6, pp. 648–669 [Geochem. Int. (Engl. Transl.), 2004a, no. 6, pp. 635–654].

  • Maslov, A.V., Krupenin, M.T., Ronkin, Yu.L., et al., Fine-Grained Aluminosiliciclastic Rocks of the Middle Riphean Stratotype Section in the Middle Urals: Peculiarities of the Formation, Composition, and Evolution of Source Rocks, Litol. Polezn. Iskop., 2004b, no. 4, pp. 414–441 [Lithol. Miner. Resour. (Engl. Transl.), 2004b, no. 4, pp. 357–320].

  • Maslov, A.V., Alekseev, V.P., and Fedorov, Yu.N., Verification of Genetic Reconstructions Based on Lithochemical Indicators for the Tyumen Fomeation of the Shaim Petroliferous Region, in Puti Realizatsii Neftegazovogo i Rudnogo Potentsiala Khanty-Mansiiskogo Avtonomnogo Okruga-Yugry (Pathways for the Realization of Petroleum and Ore Potential of the Khanty-Mansi Autonomous Yugra Region), 2007a, vol. 1, pp. 246–253..

    Google Scholar 

  • Maslov, A.V., Alekseev, V.P., Fedorov, Yu.N., and Ronkin, Yu.L., The REE Systematics of the Lower Mesozoic Fine-Grained Terrigenous Rocks in the Shaim Petroliferous Region, in Sostoyanie, Tendentsii I Problemy Razvitiya Neftegazovogo Potentsiala Zapadnoi Sibiri (State, Trend, and Problems of the Development of Petroleum Potential in West Siberia), Tyumen: FGUP ZapSibNIIGG, 2007b, pp. 379–384.

    Google Scholar 

  • Maslov, A.V., Gareev, E.Z., Krupenin, M.T., and Ronkin, Yu.L., Lithogeochemical Features of the Upper Riphean Shales and Mudstones in the Bashkirian Anticlinorium in the Real-Time Coordinates, Litosfera, 2007c, no. 5, pp. 38–67.

  • Mayewski, P.A. and Goldthwait, R.P., Glacial Events in the Transantarctic Mountains: A Record of the East Antarctic Ice Sheet, Am. Geophys. Union. Antarct. Res. Ser., 1985, vol. 36, pp. 275–324.

    Google Scholar 

  • McKelvey, B.C., Webb, P.-N., Harwood, D.M., and Mabin, M.G.C., The Dominion Range Sirius Group: A Record of the Late Pliocene-Early Pleistocene Beardmore Glacier, in Fifth International Symposium on Antarctic Earth Sciences, Thomson, M.R.A., Crame, J.A., and Thomson, J.W., Eds., Cambridge: Cambr. Univ. Press, 1991.

    Google Scholar 

  • McKelvey, B.C., Harwood, M.J., Harwood, D.M., et al., The Pagodroma Group — A Cenozoic Record of the East Antarctic Ice Sheet in the Northern Prince Charles Mountains, Antarct. Sci., 2001, vol. 13, pp. 455–468.

    Article  Google Scholar 

  • Nesbitt, H.W. and Young, G.M., Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites, Nature, 1982, vol. 299, pp. 715–717.

    Article  Google Scholar 

  • Passchier, S., Provenance and Depositional Environments of Neogene Sirius Group Deposits from the Shackleton and Beardmore Glacier Areas, Central Transantarctic Mountains, in Antarctica at the Close of a Millennium, Gamble, J.A., Skinner, D.N.B., and Henrys, S., Eds., R. Soc. New Zeal. Bull., 2002, vol. 35, pp. 309–318.

  • Passchier, S., Variability in Geochemical Provenance and Weathering History of Sirius Group Strata, Transantarctic Mountains: Implications for Antarctic Glacial History, J. Sediment. Res., 2004, vol. 74, pp. 607–619.

    Article  Google Scholar 

  • Passchier, S. and Krissek, L.A., Oligocene-Miocene Antarctic Continental Weathering Record and Paleoclimatic Implications, Cape Roberts Drilling Project, Ross Sea, Antarctica, Palaeogeogr. Palaeoclimat. Palaeoecol, 2008.

  • Passchier, S. and Whitehead, J.M., Anomalous Geochemical Provenance and Weathering History of Plio-Pleistocene Glaciomarine Fjord Strata, Bardin Bluffs Formation, East Antarctica, Sedimentology, 2006, vol. 53, pp. 929–942.

    Article  Google Scholar 

  • Reimold, W. U., von Brunn, V., and Koeberl, C., Are Diamictites Impact Ejecta? No supporting Evidence from South African Dwyka Group Diamictite, J. Geol., 1997, vol. 105, pp. 517–530.

    Article  Google Scholar 

  • Robert, C. and Chamley, H., Late Eocene-Early Oligocene Evolution of Climate and Marine Circulation: Deep-Sea Clay Mineral Evidence, in The Antarctic Paleoenvironment: A Perspective on Global Change, Kennett, J.P. and Warnke, D.A, Eds., Washington, DC: Am. Geophys. Union, 1992, Part 1.

    Google Scholar 

  • Rust I.C. Lower Palaeozoic Rocks of Southen Africa, in Lower Palaeozoic of the Middle East, Eastern and Southern Africa and Antarctica, Holland, C.H., Ed., Chichester: John Wiley and Sons, 1981.

    Google Scholar 

  • Scheffler, K., Reconstruction of Sedimentary Environment and Climate Conditions by Multi-Geochemical Investigations of Late Palaeozoic Glacial to Postglacial Sedimentary Sequences from SW-Gondwana, Dissertation zur Erlangung des Doktorgrades, Bonn: Rheinischen Friedrich-Wilhelms-Universitát, 2004, 243 p.

    Google Scholar 

  • Scheffler, K., Hoernes, S., and Schwark, L., Global Changes during Carboniferous-Permian Glaciation of Gondwana: Linking Polar and Equatorial Climate Evolution by Geochemical Proxies, Geology, 2003, vol. 31, pp. 605–608.

    Article  Google Scholar 

  • Scheffler, K., Buehmann, D., and Schwark, L., Analysis of Late Palaeozoic Glacial to Postglacial Sedimentary Successions in South Africa by Geochemical Proxies — Response to Climate Evolution and Sedimentary Environment, Palaeogeogr. Palaeoclimat. Palaeoecol., 2006, vol. 240, pp. 184–203.

    Article  Google Scholar 

  • Shaw, R.J. and Hendry, M.J., Hydrogeology of a Thick Clay Till and Cretaceous Clay Sequence, Saskatchewan, Canada, Can. Geotech. J., 1998, vol. 35, pp. 1–12.

    Article  Google Scholar 

  • Smith, R.M.H., Eriksson, P.G., and Botha, W.J. A Review of the Stratigraphy and Sedimentary Environments of the Karoo-Aged Basins of Southern Africa, J. Afr. Earth Sci., 1993, vol. 16.

  • Stollhofen, H., Stanistreet, I.G., Bangert, B., and Grill, H., Tuffs, Tectonism and Glacially Related Sea Level Changes, Carboniferous-Permian, Southern Namibia, Palaeogeogr. Palaeoclimat. Palaeoecol., 2000, vol. 161, pp. 127–150.

    Article  Google Scholar 

  • Stroeven, A.P. and Prentice, M., L., A Case for Sirius Group Alpine Glaciation at Mount Fleming, South Victoria Land, Antarctica: A Case against Pliocene East Antarctic Ice Sheet Reduction, Geol. Soc. Am. Bull., 1997.

  • Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwell 1985. Translated under the title Kontinental’naya kora: ee sostav I evolyutsiya, Moscow: Mir, 1988.

    Google Scholar 

  • Troedson, A.L. and Riding, J.B., Upper Oligocene to Lowermost Miocene Strata of King George Island, South Shetland Islands, Antarctica: Stratigraphy, Facies Analysis, and Implications for the Glacial History of the Antarctic Peninsula, J. Sediment. Res., 2002.

  • Turner, B.R., Tectonostratigraphical Development of the Upper Karoo Foreland Basin: Orogenic Unloading versus Thermally-Induced Gondwana Rifting, J. Afr. Earth Sci., 1999, vol. 28, pp. 215–238.

    Article  Google Scholar 

  • Visser, J.N.J., The Table Mountain Group: A Study in the Deposition of Quartz Arenites on a Stable Shelf, Trans. Geol. Soc. S. Afr., 1974, vol. 77, pp. 229–237.

    Google Scholar 

  • Visser, J.N.J., The Permo-Carboniferous Dwyka Formation of Southern Africa. Deposition by a Predominantly Subpolar Marine Ice Sheet, Palaeogeogr. Palaeoclimat. Palaeoecol., 1989, vol. 70, pp. 377–391.

    Article  Google Scholar 

  • Visser, J.N.J., Post-Glacial Permian Stratigraphy and Geography of Southern and Central Africa. Boundary Conditions for Climatic Modeling, Palaeogeogr. Palaeoclimat. Palaeoecol., 1995, vol. 118, pp. 213–243.

    Article  Google Scholar 

  • Visser, J.N.J., Deglaciation Sequences in the Permo-Carboniferous Karoo and Kalahari Basins of Southern Africa. A Tool in the Analysis of Cyclic Glaciomarine Basin Fills, Sedimentology, 1997, vol. 44, pp. 507–521.

    Article  Google Scholar 

  • Visser, J.N.J. and Young, G.M., Major Element Geochemistry and Paleoclimatology of the Permo-Carboniferous Glacigene Dwyka Formation and Post-Glacial Mudrocks in Southern Africa, Palaeogeogr. Palaeoclimat. Palaeoecol., 1990, vol. 81, pp. 49–57.

    Article  Google Scholar 

  • Webb, P.-N., Harwood, D.M., Mabin, M.G.C., and McKelvey B.C., A Marine and Terrestrial Sirius Group Succession, Middle Beardmore Glacier-Queen Alexandra Range, Transantarctic Mountains, Antarctica, Mar. Micropaleont., 1996a, vol. 27, pp. 273–297.

    Article  Google Scholar 

  • Webb, P.-N., Harwood, D.M., Hambrey, M.J., et al., The Late Cenozoic Sirius Group of the Upper Shackleton Glacier Region, Transantarctic Mountains, Antarctic J. United States, 1996b, vol. 31, pp. 12–13.

    Google Scholar 

  • Wedepohl, K.H., The Composition of the Continental Crust, Geochim. Cosmochim. Acta, 1995, vol. 59, pp, 1217–1232.

    Article  Google Scholar 

  • Whitehead, J.M., Harwood, D.M., McKelvey, B.C., et al., Diatom Biostratigraphy of the Cenozoic Fjordal Pagodroma Group, Northern Prince Charles Mountains, East Antarctica, Aust. J. Earth Sci., 2004, vol. 51, pp. 521–547.

    Article  Google Scholar 

  • Wilson, G.S., Barron, J.A., Harwood, D.M., et al., The Mount Feather Diamicton of the Sirius Group: An Accumulation of Indicators of Neogene Antarctic Glacial and Climatic History, Palaeogeogr. Palaeoclimat. Palaeoecol., 2002, vol. 182, pp. 117–131.

    Article  Google Scholar 

  • Yan, X.-P., Kerrich, R., and Hendry, M.J., Trace Element Geochemistry of a Thick Till and Clay-Rich Aquitard Sequence, Saskatchewan, Canada, Chem. Geol., 2000, vol. 164, pp. 93–120.

    Article  Google Scholar 

  • Young, G.M., The Geologic Record of Glaciation: Relevance to the Climatic History of Earth, Geosci. Can., 1991, vol. 18, pp. 100–108.

    Google Scholar 

  • Young, G.M., Comparative Geochemistry of Pleistocene and Paleoproterozoic (Huronian) Glaciogenic Laminated Deposits: Relevance to Crustal and Atmospheric Composition in the Last 2.3 Ga, J. Geol., 2001, vol. 109, pp. 463–477.

    Article  Google Scholar 

  • Young, G.M. and Nesbitt, H.W., Processes Controlling the Distribution of Ti and Al in Weathering Profiles, Siliciclastic Sediments and Sedimentary Rocks, J. Sediment. Res., 1998, vol. 68.

  • Young, G.M., Minter, W.E.,L., and Theron, J.N., Geochemistry and Palaeogeography of Upper Ordovician Glaciogenic Sedimentary Rocks in the Table Mountain Group, South Africa, Palaeogeogr. Palaeoclimat. Palaeoecol., 2004, pp. 323–345.

  • Zachos, J., Pagani, M., and Sloan, L., et al., Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present, Science, 2001.

  • Zalán, P.V., Wolff, S., Conceicao, J.C.J., et al., The Paraná Basin, Brazil, in Interior Cratonic Basins, Leighton, M.W., Kolata, D.R., and Oltz, D.F., Eds., Am. Assoc. Petrol. Geol., 1990, vol. 51, pp. 681–708.

  • Zharkov, M.A., Paleogeographic Rearrangements and Settings of Sedimentation in the Permian and Early Triassic, in Klimat v epokhi krupnykh biosfernykh perestroek (Climate during Epochs of Great Biospheric Rearrangements), Semikhatov, M.A. and Chumakov, N.M., Eds., Moscow: Nauka, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Maslov.

Additional information

Original Russian Text © A.V. Maslov, 2010, published in Litologiya i Poleznye Iskopaemye, 2010, No. 5, pp. 496–518.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, A.V. Glaciogenic and related sedimentary rocks: Main lithochemical features. Communication 2. The Paleozoic and Cenozoic. Lithol Miner Resour 45, 443–464 (2010). https://doi.org/10.1134/S0024490210050044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490210050044

Keywords

Navigation