Skip to main content
Log in

Carbon and oxygen isotopic composition of the Vendian-Cambrian carbonate rocks and paleoecological reconstructions

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The carbon isotopic composition of carbonate rocks is widely used for the reconstruction of sedimentation paleoenvironment. Of special interest is the study of the Upper Proterozoic-Cambrian interval—the turning point in the Earth’s geological evolution. Rocks of this age show the widest variations in the carbon isotopic composition of carbonates typically correlated with epochs of global glaciations and change in the CO2 regime. In this paper, we attempted to show that carbon isotopic variations often indicate postsedimentary alterations of carbonates and reflect the specific geochemical transformations of the rocks. Study of variations of carbon and oxygen isotopic compositions in the Vendian-Cambrian rocks provide insight into lithogenetic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, P.A., Leather, J., and Brasier, M.D., The Neoproterozoic Fiq Glaciation and Its Aftermath, Huqf Supergroup of Oman, Basin Res., 2004, vol. 16, pp. 507–534.

    Article  Google Scholar 

  • Amthor, J.E., Grotzinger, J.P., Schroder, S., et al., Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian Boundary in Oman, Geology, 2003, vol. 31, no. 5, pp. 431–434.

    Article  Google Scholar 

  • Banner, J.L. and Hanson, G.N., Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 3123–3137.

    Article  Google Scholar 

  • Boucot, A.J. and Gray, J., A Critique of Phanerozoic Climatic Models Involving Changes in the CO2 Content of the Atmosphere, Earth Sci. Rev., 2001, vol. 56, pp. 1–159.

    Article  Google Scholar 

  • Brand, U. and Veizer, J., Chemical Diagenesis of Multicomponent Carbonate System-1. Trace Elements, J. Sediment. Petrol., 1980, vol. 50, pp. 1219–1250.

    Google Scholar 

  • Calver, C.R., Isotope Stratigraphy of the Ediacarian (Neoproterozoic III) of the Adelaide Rift Complex, Australia, and the Overprint of Water Column Stratification, Precambrian Res., 2000, vol. 100, pp. 121–150.

    Article  Google Scholar 

  • Cozzi, A., Grotzinger, J.P., and Allen, P.A., Evolution of a Terminal Neoproterozoic Carbonate Ramp System (Buah Formation, Sultanate of Oman): Effects of Basement Paleotopography, GSA Bull., 2004, vol. 116, nos. 11/12, pp. 1367–1384.

    Article  Google Scholar 

  • Dählmann, A. and De Lange, G.J., Fluid-Sediment Interactions at Eastern Mediterranean Mud Volcanoes: A Stable Isotope Study from ODP Leg 160, Earth Planet. Sci. Lett., 2003, vol. 212, pp. 377–391.

    Article  Google Scholar 

  • Dan Bridges L.W. Our Expending Earth, Denver: USA, Color., 2002.

    Google Scholar 

  • Derry, L.A., Kaufman, A.J., and Jacobsen, S.B., Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 1317–1329.

    Article  Google Scholar 

  • Dickens, G.R., Rethinking the Global Carbon Cycle with a Large, Dynamic and Microbially Mediated Gas Hydrate Capacitor, Earth Planet. Sci. Lett., 2003, vol. 213, pp. 169–183.

    Article  Google Scholar 

  • Dickens, G.R., O’Neil, J.R., Rea, D.K., and Owen, R.M., Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene, Paleoceanography, 1995, vol. 10, pp. 965–971.

    Article  Google Scholar 

  • Egorov, A.Yu., Silicification and Accompanying Processes in the Kashira Horizon of the Upper Volga Region, in Postsedimentatsionnye izmeneniya karbonatnykh porod i ikh znachenie dlya istoriko-geologicheskikh rekonstruktsii (Postsedimentatry Alterations of Carbonate Rocks and Their Significance for Historical-Geological Reconstructions), Moscow: Nauka, 1980, pp. 43–62.

    Google Scholar 

  • Egorov, V.A., Vinogradov, V.I., Kolesnikov, E.M., et al., Multistage Alteration of Pre-Vendian Oil-Bearing Rocks of the Baikit Anteclise (Siberian Platform) Based on Rb-Sr and K-Ar Data, Litol. Polezn. Iskop., 2003, vol. 38, no. 5, pp. 463–473 [Lithol. Miner. Resour. (Engl. Transl.), 2003, vol. 38, no. 5, pp. 394–402].

    Google Scholar 

  • Ferronskii, V.I. and Polyakov, V.A., Izotopiya gidrosfery (Isotopy of Hydrosphere), Moscow: Nauka, 1983.

    Google Scholar 

  • Galimov, E.M., Geokhimiya stabil’nykh izotopov ugleroda (Geochemistry of Stable Carbon Isotopes), Moscow: Nedra, 1968.

    Google Scholar 

  • Galimov, E.M., Isotope Organic Geochemistry, in Organic Geochemistry, 2006, vol. 37, pp. 1200–1262.

    Article  Google Scholar 

  • Gao, G., Geochemical and Isotope Constraints on the Diagenetic History of a Massive Stratal, Late Cambrian (Royer) Dolomite, Lower Arbuckle Group, Slick Hills, SW Oklahoma, USA, Geochim. Cosmochim. Acta, 1990, vol. 59, pp. 1979–1989.

    Article  Google Scholar 

  • Gao, G. and Land, L.S., Geochemistry of Cambro-Ordovician Arbucle Limestone, Oklahoma: Implications for Diagenetic δ18O Alteration and Secular δ13C and 87Sr/86Sr Variation, Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 2911–2920.

    Article  Google Scholar 

  • Grinenko, V.A. and Grinenko, L.N., Geokhimiya izotopov sery (Geochemistry of Sulfur Isotopes), Moscow: Nauka, 1974.

    Google Scholar 

  • Halverson, G.P., Hoffman, P.F., Schrag, D.P., et al., Toward a Neoproterozoic Composite Carbon-Isotope Record, GSA Bull., 2005, vol. 117, nos. 9/10, pp. 1181–1207.

    Article  Google Scholar 

  • Haq, B.U., Gas Hydrates: Greenhouse Nightmare Energy Panacea or Pipe Dream, GSA TODAY, 1998, vol. 8, no. 11, pp. 1–5.

    Google Scholar 

  • Hesse, R. and Harrison, W.E., Gas Hydrates (Clathrates) Causing Pore-Water Freshening and Oxygen Isotope Fractionation in Deep-Water Sedimentary Sections of Terrigenous Continental Margins, Earth Planet. Sci. Lett., 1981, vol. 55, pp. 453–562.

    Article  Google Scholar 

  • Heydari, E., Wadeb, W.J., and Hassanzaddehs, J., Diagenetic Origin of Carbon and Oxygen Isotope Compositions of Permian-Triassic Boundary Strata, Sediment. Geol., 2001, vol. 143, nos. 3–4, pp. 191–197.

    Article  Google Scholar 

  • Hill, A.C. and Walter, M.R., Mid-Neoproterozoic (∼830–750 Ma) Isotope Stratigraphy of Australia and Global Correlation, Precambrian Res., 2000, vol. 100, pp. 181–211.

    Article  Google Scholar 

  • Hurtgen, M.T., Arthur, M.A., Suits, N.S., and Kaufman, A.J., The Sulfur Isotopic Composition of Neoproterozoic Seawater Sulfate: Implications for a Snowball Earth, Earth Planet. Sci. Lett., 2002, vol. 203, pp. 413–429.

    Article  Google Scholar 

  • Jacobsen, S.B. and Kaufman, A.J., The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater, Chem. Geol., 1999, vol. 161, pp. 37–57.

    Article  Google Scholar 

  • Kholodov, V.N., Problems of the Formation of Dolomites at the Current Development Stage of Lithology, in Evolyutsiya karbonatonakopleniya v istorii Zemli (Evolution of Carbonate Accumulation in the Earth’s History), Moscow: Nauka, 1988, pp. 3–23.

    Google Scholar 

  • Kholodov, V.N., Mud Volcanoes: Distribution Regularities and Genesis. Communication 1. Mud Volcanic Provinces and Morphology of Mud Volcanoes, Litol. Polezn. Iskop., 2002a, vol. 37, no. 3, pp. 227–241 [Lithol. Miner. Resour. (Engl. Transl.), 2002a, vol. 37, no. 3, pp. 197–209].

    Google Scholar 

  • Kholodov, V.N., Mud Volcanoes: Distribution Regularities and Genesis. Communication 2. Geological-Geochemical Peculiarities and Formation Model, Litol. Polezn. Iskop., 2002b, vol. 37, no. 4, pp. 331–358 [Lithol. Miner. Resour. (Engl. Transl.), 2002b, vol. 37, no. 4, pp. 293–309].

    Google Scholar 

  • Kvenvolden, K.A., Methane-Hydrate: A Major Reservoir of Carbon in Shallow Geosphere, Chem. Geol., 1988, vol. 71, pp. 41–51.

    Article  Google Scholar 

  • Land, L.S., Comment on “Oxygen and Carbon Isotopic Composition of Ordovician Brachiopods: Implications for Coeval Seawater: by Quing, H. and Veizer, J.,” Geochim. Cosmochim. Acta, 1995, vol. 59, no. 13, pp. 2843–2844.

    Article  Google Scholar 

  • Lavrushin, V.Yu., Dubinina, E.O., and Avdeenko, A.S., Isotopic Composition of Oxygen and Hydrogen in Mud-Volcanic Waters from Taman (Russia) and Kakhetia (Eastern Georgia), Litol. Polezn. Iskop., 2005, vol. 40, no. 2, pp. 143–158 [Lithol. Miner. Resour. (Engl. Transl.), 2005, vol. 40, no. 2, pp. 123–137].

    Google Scholar 

  • Lavrushin, V.Yu., Polyak, B.G., Prasolov, E.M., and Kamenskii, I.L., Sources of Material in Mud Volcano Products (Based on Isotopic, Hydrochemical, and Geological Data), Litol. Polezn. Iskop., 1996, vol. 31, no. 6, pp. 625–647 [Lithol. Miner. Resour. (Engl. Transl.), 1996, vol. 31, no. 6, pp. 557–578].

    Google Scholar 

  • Le Guerroue, T., Allen, P.A., and Cozzi, A., Chemostratigraphic and Sedimentological Framework of the Largest Negative Carbon Isotopic Excursion in Earth History: The Neoproterozoic Shuram Formation (Nafun Group, Oman), Precambrian Res., 2006, vol. 146, nos. 1–2, pp. 68–92.

    Google Scholar 

  • Leather, J., Sedimentology, Chemostratigraphy and Geochronology of the Lower Huqf Supergroup, Oman, Unpublished PhD Dissertation, Trinity College Dublin, 2001.

  • Lindsay, J.F. and Brasier, M.D., A Carbon Isotope Reference Curve for ca. 1700-1575 Ma, McArthur and Mount Isa Basins, Northern Australia, Precambrian Res., 2000, vol. 99, pp. 271–308.

    Article  Google Scholar 

  • Lindsay, J.F. and Brasier, M.D., Did Global Tectonics Drive Early Biosphere Evolution Carbon Isotope Record from 2.6 to 1.9 Ga Carbonates of Western Australian Basins, Precambrian Res., 2002, vol. 114, pp. 1–34.

    Article  Google Scholar 

  • Longinelli, A., Pre-Quaternary Isotope Paleoclimatological and Paleoenvironmental Studies: Science or Artifact, Chem. Geol., 1996, vol. 129, pp. 163–166.

    Article  Google Scholar 

  • Longinelli, A., Iacumin, P., and Ramigni, M., δ18O of Carbonate, Quartz and Phosphate from Belemnite Guards: Implications for the Isotopic Record of Old Fossils and the Isotopic Composition of Ancient Seawater, Earth Planet. Sci. Lett., 2002, vol. 203, pp. 445–459.

    Article  Google Scholar 

  • Machel, H.G., Cavell, P.A., and Patey, K.S., Isotopic Evidence for Carbonate Cementation and Recrystallization, and for Tectonic Expulsion of Fluids into the Western Canada Sedimentary Basin, Geol. Soc. Am. Bull., 1996, vol. 108, no. 9, pp. 1108–1119.

    Article  Google Scholar 

  • Magaritz, M. and Stemmerik, L., Oscillation of Carbon and Oxygen Isotope Compositions of Carbonate Rocks between Evaporative and Open Marine Environments, Upper Permian of East Greenland, Earth Planet. Sci. Lett., 1989, vol. 93, pp. 233–240.

    Article  Google Scholar 

  • Maksimova, S.V., Reconstruction of the Tectono-Sedimentary History of Secondary Alterations of Carbonate Rocks, in Postsedimentatsionnye izmeneniya karbonatnykh porod i ikh znachenie dlya istoriko-geologicheskikh rekonstruktsii (Post-sedimentary Alterations of Carbonate Rocks and Their Significance for Historical-Geological Reconstructions), Moscow: Nauka, 1980, pp. 63–73.

    Google Scholar 

  • Pelechaty, S.M., Kaufman, A.J., and Grotzinger, J.P., Evolution of δ13C Chemostratigraphy for Intrabasinal Correlation: Vendian Strata of Northeast Siberia, GSA Bull., 1996, vol. 108, no. 8, pp. 992–1003.

    Article  Google Scholar 

  • Pisarchik, Ya.K., Litologiya i fatsii nizhne-i srednekembriiskikh otlozhenii Irkutskogo amfiteatra (Lower and Middle Cambrian Lithology and Facies of the Irkutsk Amphitheater), Leningrad: Gos. Nauchno-Tekhn. Inst. Neft. Gorno-Toplivn. Literatury, 1963.

    Google Scholar 

  • Pisarchik, Ya.K., Minaeva, M.A., and Rusetskaya, G.A., Paleogeografiya Sibirskoi platformy (Paleogeography of the Siberian Platform), Leningrad: Nedra, 1975.

    Google Scholar 

  • Pokrovsky, B.G., Proterozoic-Paleozoic Boundary: Isotope Anomalies in Sections of the Siberian Platform and Global Environmental Changes, Litol. Polezn. Iskop., 1996, vol. 31, no. 4, pp. 376–392 [Lithol. Miner. Resour. (Engl. Transl.), 1996, vol. 31, no. 4, pp. 333–347].

    Google Scholar 

  • Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, Oxygen, Strontium, and Sulfur Isotopic Composition in Late Precambrian Rocks of the Patom Complex, Central Siberia: Communication 1. Results, Isotope Stratigraphy, and Dating Problems, Litol. Polezn. Iskop., 2006a, vol. 41, no. 5, pp. 505–530 [Lithol. Miner. Resour. (Engl. Transl.), 2006a, vol. 41, no. 5, pp. 450–474].

    Google Scholar 

  • Pokrovsky, B.G., Melezhik, V.A., and Bujakaite, M.I., Carbon, Oxygen, Strontium, and Sulfur Isotopic Composition in Late Precambrian Rocks of the Patom Complex, Central Siberia: Communication 2. Nature of Carbonates with Ultralow and Ultrahigh 13C Values, Litol. Polezn. Iskop., 2006b, vol. 41, no. 6, pp. [Lithol. Miner. Resour. (Engl. Transl.), 2006b, vol. 41, no. 6, pp. 576–587].

  • Railsback, L.B. and Hood, E.C., A Survey of Multi-Stage Diagenesis and Dolomitization of Jurassic Limestones along Regional Shelf-to-Basin Transect in the Ziz Valley, Central High Atlas Mountains, Morocco, Sediment. Geol., 2001, vol. 139, nos. 3–4, pp. 285–314.

    Article  Google Scholar 

  • Richards, I.J., Labotka, T.C., and Gregory, R.T., Contrasting Stable Isotope Behavior between Calcite and Dolomite Marbles, Lone Mountain, Nevada, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 202–221.

    Article  Google Scholar 

  • Schidlowski, M., Carbon Isotopes Biogeochemical Recorders of Life over 3.8 Ga of Earth History: Evolution of a Concept, Precambrian Res., 2001, vol. 106, pp. 117–134.

    Article  Google Scholar 

  • Schidlowski, M., Hayes, J.M., and Kaplan, I.R., Isotopic Inferences of Ancient Biochemistries: Carbon, Sulfur, Hydrogen, and Nitrogen, in Earth’s Earliest Biosphere. Its Origin and Evolution, Schopf, J.W., Ed., Princeton: Univ. Press, 1983, pp. 149–186.

    Google Scholar 

  • Shields, G.A., Brasier, M.D., Stille, P., and Dorjnamjaa, D., Factors Contributing to High N13C Values in Cryogenian Limestones of Western Mongolia, Earth Planet. Sci. Lett., 2002, vol. 196, pp. 99–111.

    Article  Google Scholar 

  • Shields, G.A., Carden, G.A.F., Veizer, J., et al., Sr, C, and O Isotope Geochemistry of Ordovician Brachiopods: A Major Isotopic Event around the Middle-Late Ordovician Transition, Geochim. Cosmochim. Acta, 2003, vol. 67, no. 11, pp. 2005–2025.

    Article  Google Scholar 

  • Sreeniwas, B. and Das Sharma, The Sr, C and O Isotopic Evolution of Neoproterozoic Seawater—Comment, Chem. Geol, 2001, vol. 181, pp. 193–195.

    Article  Google Scholar 

  • Valyaev, B.M., Grinchenko, Yu.I., Erokhin, V.E., et al., Isotopic Signature of Mud Volcanoes, Litol. Polezn. Iskop., 1985, vol. 20, no. 1, pp. 72–87.

    Google Scholar 

  • Veizer, J., Davin, A., Karem, A., et al., Methane-Hydrate—A Major Reservoir of Carbon in Shallow Geosphere, Chem. Geol., 1988, vol. 71, pp. 41–51.

    Article  Google Scholar 

  • Veizer, J., Ala, D., Azmy, K., et al., 87Sr/Sr, δ13C and δ18O Evolution of Phanerozoic Seawater, Chem. Geol., 1999, vol. 161, pp. 59–88.

    Article  Google Scholar 

  • Vinogradov, V.I., Was There a Conflict at the Neoproterozoic-Cambrian Boundary: Evidence from Sulfur Isotopic Composition?, Litol. Polezn. Iskop., 2007, vol. 42, no. 1, pp. 3–17 [Lithol. Miner. Resour. (Engl. Transl.), 2007, vol. 42, no. 1, pp. 1–14].

    Google Scholar 

  • Vinogradov, V.I. and Pustyl’nikov, A.M., Sulfur Isotopic Composition of Cambrian Evaporites of the Siberian Platform as an Indicator of Biospheric Activity and Depositional Environment, Litol. Polezn. Iskop., 1994, vol. 29, no. 5, pp. 119–124.

    Google Scholar 

  • Vinogradov, V.I., Belenitskaya, G.A., Bujakaite, M.I., et al., Isotopic Signatures of Deposition and Transformation of Lower Cambrian Saliferous Rocks in the Irkutsk Amphitheater: Communication 1. Sulfur Isotopic Composition, Litol. Polezn. Iskop., 2006a, vol. 41, no. 1, pp. 96–110 [Lithol. Miner. Resour. (Engl. Transl.), 2006a, vol. 41, no. 1, pp. 85–89].

    Google Scholar 

  • Vinogradov, V.I., Belenitskaya, G.A., Bujakaite, M.I, et al., Isotopic Signatures of Deposition and Transformation of Lower Cambrian Saliferous Rocks in the Irkutsk Amphitheater: Communication 2. Strontium Isotopic Composition, Litol. Polezn. Iskop., 2006b, vol. 41, no. 2, pp. 183–192 [Lithol. Miner. Resour. (Engl. Transl.), 2006b, vol. 41, no. 2, pp. 165–173].

    Google Scholar 

  • Vinogradov, V.I., Belenitskaya, G.A., Bujakaite, M.I., et al., Isotopic Signatures of Deposition and Transformation of Lower Cambrian Saliferous Rocks in the Irkutsk Amphitheater: Communication 3. Carbon and Oxygen Isotopic Composition in Carbonates, Litol. Polezn. Iskop., 2006c, vol. 41, no. 3, pp. 301–310 [Lithol. Miner. Resour. (Engl. Transl.), 2006c, vol. 41, no. 3, pp. 271–279].

    Google Scholar 

  • Vinogradov, V.I., Belenitskaya, G.A., Bujakaite, M.I., et al., Isotopic Evidences for Postsedimentary Transformation of Rocks of the Lower Cambrian Angara Formation in the Irkutsk Amphitheater, Litol. Polezn. Iskop., 2006d, vol. 41, no. 6, pp. 655–668 [Lithol. Miner. Resour. (Engl. Transl.), 2006d, vol. 41, no. 6, pp. 588–600].

    Google Scholar 

  • Wadleight, M.A. and Veizer, J., 18O/16O and 13C/12C in Lower Paleozoic Articulate Brachiopods: Implications for the Isotopic Composition of Seawater, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 431–443.

    Article  Google Scholar 

  • Walter, M.R., Veevers, J.J., Calver, C.R., et al., Dating the 840-544 Ma Neoproterozoic Interval by Isotopes of Strontium, Carbon, and Sulfur in Seawater, and Some Interpretative Models, Precambrian Res., 2000, vol. 100, pp. 371–433.

    Article  Google Scholar 

  • Worden, R.H., Smalley, P.C., and Oxtoby, N.H., The Effects of Thermochemical Sulfate Reduction upon Formation Water Salinity Oxygen Isotopes in Carbonate Gas Reservoirs, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3925–3931.

    Article  Google Scholar 

  • Zverev, V.P., Rol’podzemnykh vod v migratsii khimicheskikh elementov (The Role of Groundwaters in the Migration of Elements), Moscow: Nedra, 1982.

    Google Scholar 

  • Zverev, V.P., Massopotoki podzemnoi gidrosfery (Mass Flows in the Underground Hydrosphere), Moscow: Nauka, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vinogradov.

Additional information

Original Russian Text © V.I. Vinogradov, 2008, published in Litologiya i Poleznye Iskopaemye, 2008, No. 1, pp. 51–65.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinogradov, V.I. Carbon and oxygen isotopic composition of the Vendian-Cambrian carbonate rocks and paleoecological reconstructions. Lithol Miner Resour 43, 44–57 (2008). https://doi.org/10.1134/S0024490208010045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0024490208010045

Keywords

Navigation