Skip to main content
Log in

Quantum-Chemical Study of C–H Bond Activation in Methane on Ni–Cu Oxide and Sulfide Clusters

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) (PBE) was used to simulate the breaking of C–H bond in methane on copper-enriched Ni–Cu clusters as the first step of dry reforming of methane. The models of catalysts were the nanoscale clusters NiCu11S6(PH3)8, NiCu11S6, NiCu11O6(PH3)8, and NiCu11O6. The binding energy of methane with the clusters was calculated, and the activation energy of the step CH4* → \({\text{CH}}_{3}^{*}\) + H* was determined. It was found from the obtained data that the NiCu11O6 catalytic system is the most promising for CH4 activation in terms of both kinetics (activation energy is 99 kJ/mol) and thermodynamics (energy change of the step is –29 kJ/mol). The coking resistance of the NiCu11O6 cluster was estimated by simulating the CH adsorption followed by dissociation (CH* → C* + H*). The calculated activation energy of this step is rather high: 159 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Olivos-Suarez, A.I., Szécsényi, À., Hensen, E.J.M., Ruiz-Martinez, J., Pidko, E.A., and Gascon, J., ACS Catal., 2016, vol. 6, p. 2965. https://doi.org/10.1021/acscatal.6b00428

    Article  CAS  Google Scholar 

  2. Franz, R., Uslamin, E.A., and Pidko, E.A., Mendeleev Commun., 2021, vol. 31, p. 584. https://doi.org/10.1016/j.mencom.2021.09.002

    Article  CAS  Google Scholar 

  3. Wang, L. and Wang, F., Energy Fuels, 2022, vol. 36, p. 5594. https://doi.org/10.1021/acs.energyfuels.2c01007

    Article  CAS  Google Scholar 

  4. Wittich, K., Krämer, M., Bottke, N., and Schunk, S.A., ChemCatChem, 2020, vol. 12, p. 2130. https://doi.org/10.1002/cctc.201902142

    Article  CAS  Google Scholar 

  5. de Medeiros, F.G.M., Lopes, F.W.B., and de Vasconcelos, B.R., Catalysts, 2022, vol. 12, p. 363. https://doi.org/10.3390/catal12040363

    Article  CAS  Google Scholar 

  6. le Saché, E. and Reina, T.R., Prog. Energy Combust. Sci., 2022, vol. 89, p. 100970. https://doi.org/10.1016/j.pecs.2021.100970

    Article  Google Scholar 

  7. Zhang, G., Liu, J., Xu, Y., and Sun, Y., Int. J. Hydrogen Energy, 2018, vol. 43, p. 15030. https://doi.org/10.1016/j.ijhydene.2018.06.091

    Article  CAS  Google Scholar 

  8. Parsapur, R.K., Chatterjee, S., and Huang, K.-W., ACS Energy Lett., 2020, vol. 5, p. 2881. https://doi.org/10.1021/acsenergylett.0c01635

    Article  CAS  Google Scholar 

  9. Sadykov, V.A., Simonov, M.N., Bespalko, Y.N., Bobrova, L.N., Eremeev, N.F., Arapova, M.V., Smal’, E.A., Mesentseva, N.V., and Pavlova, S.N., Kinet. Catal., 2019, vol. 60, no. 5, p. 582. https://doi.org/10.1134/S0023158419050082

    Article  CAS  Google Scholar 

  10. Song, Y., Ozdemir, E., Ramesh, S., Adishev, A., Subramanian, S., Harale, A., Albuali, M., Fadhel, B.A., Jamal, A., Moon, D., Choi, S.H., and Yavuz, C.T., Science, 2020, vol. 367, p. 777. https://doi.org/10.1126/science.aav2412

    Article  CAS  PubMed  Google Scholar 

  11. Le Saché, E., Pastor-Perez, L., Watson, D., Sepulveda-Escribano, A., and Reina, T.R., Appl. Catal. B: Environ., 2018, vol. 236, p. 458. https://doi.org/10.1016/j.apcatb.2018.05.051

    Article  CAS  Google Scholar 

  12. Volnina, E.A. and Kipnis, M.A., Kinet. Catal., 2020, vol. 61, no. 1, p. 119. https://doi.org/10.1134/S0023158420010115

    Article  CAS  Google Scholar 

  13. Álvarez, A., Bansode, A., Urakawa, A., Bavykina, A.V., Wezendonk, T.A., Makkee, M., Gascon, J., and Kapteijn, F., Chem. Rev., 2017, vol. 117, p. 9804. https://doi.org/10.1021/acs.chemrev.6b00816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahmoudi, H., Mahmoudi, M., Doustdar, O., Jahangiri, H., Tsolakis, A., Gu, S., and Wyszynski, M.L., Biofuels Eng., 2017, vol. 2, p. 11. https://doi.org/10.1515/bfuel-2017-0002

    Article  Google Scholar 

  15. Pakhare, D. and Spivey, J., Chem. Soc. Rev., 2014, vol. 43, p. 7813. https://doi.org/10.1039/C3CS60395D

    Article  CAS  PubMed  Google Scholar 

  16. Rezaei, M., Alavi, S.M., Sahebdelfar, S., and Yan, Z.F., J. Nat. Gas. Chem., 2006, vol. 15, p. 327. https://doi.org/10.1016/S1003-9953(07)60014-0

    Article  CAS  Google Scholar 

  17. Barama, S., Dupeyrat-Batiot, C., Capron, M., Bordes-Richard, E., and Bakhti-Mohammedi, O., Catal. Today, 2009, vol. 141, p. 385. https://doi.org/10.1016/j.cattod.2008.06.025

    Article  CAS  Google Scholar 

  18. Ferreira-Aparicio, P., Guerrero-Ruiz, A., and Rodriquez-Ramos, I., Appl. Catal. A: Gen., 1998, vol. 170, p. 177. https://doi.org/10.1016/S0926-860X(98)00048-9

    Article  CAS  Google Scholar 

  19. Hou, Z., Chen, P., Fang, H., Zheng, X., and Yashima, T., Int. J. Hydrogen Energy, 2006, vol. 31, p. 555. https://doi.org/10.1016/j.ijhydene.2005.06.010

    Article  CAS  Google Scholar 

  20. Aramouni, N.A.K., Touma, J.G., Tarboush, B.A., Zeaiter, J., and Ahmad, M.N., Renewable Sustainable Energy Rev., 2018, vol. 82, p. 2570. https://doi.org/10.1016/j.rser.2017.09.076

    Article  CAS  Google Scholar 

  21. Abdulrasheed, A., Jalil, A.A., Gambo, Y., Ibrahim, M., Hambali, H.U., and Shahul Hamid, M.Y., Renewable Sustainable Energy Rev., 2019, vol. 108, p. 175. https://doi.org/10.1016/j.rser.2019.03.054

    Article  CAS  Google Scholar 

  22. Goula, M.A., Charisiou, N.D., Siakavelas, G., Tzounis, L., Tsiaoussis, I., Panagiotopoulou, P., Goula, G., and Yentekakis, I.V., Int. J. Hydrogen Energy, 2017, vol. 42, p. 13724. https://doi.org/10.1016/j.ijhydene.2016.11.196

    Article  CAS  Google Scholar 

  23. Zhang, W.D., Liu, B.S., and Tian, Y.L., Catal. Commun., 2007, vol. 8, p. 661. https://doi.org/10.1016/j.catcom.2006.08.020

    Article  CAS  Google Scholar 

  24. Yu, X., Zhang, F., and Chu, W., RSC Adv., 2016, vol. 6, p. 70537. https://doi.org/10.1039/C6RA12335J

    Article  CAS  Google Scholar 

  25. le Saché, E., Johnson, S., Pastor-Perez, L., Horri, B.A., and Reina, T.R., Energies, 2019, vol. 12, p. 1007. https://doi.org/10.3390/en12061007

    Article  CAS  Google Scholar 

  26. Song, Z., Wang, Q., Guo, C., Li, S., Yan, W., Jiao, W., Qiu, L., Yan, X., and Li, R., Ind. Eng. Chem. Res., 2020, vol. 59, p. 17250. https://doi.org/10.1021/acs.iecr.0c01204

    Article  CAS  Google Scholar 

  27. Crisafulli, C., Scirè, S., Maggiore, R., Minicò, S., and Galvagno, S., Catal. Lett., 1999, vol. 59, p. 21. https://doi.org/10.1023/A:1019031412713

    Article  CAS  Google Scholar 

  28. García-Diéguez, M., Pieta, I.S., Herrera, M.C., Larrubia, M.A., and Alemany, L.J., Catal. Today, 2011, vol. 172, p. 136. https://doi.org/10.1016/j.cattod.2011.02.012

    Article  CAS  Google Scholar 

  29. Mahoney, E.G., Pusel, J.M., Stagg-Williams, S.M., and Faraji, S., J. CO 2 Util., 2014, vol. 6, p. 40. https://doi.org/10.1016/j.jcou.2014.01.003

  30. Huang, T., Huang, W., Huang, J., and Ji, P., Fuel Process. Technol., 2011, vol. 92, p. 1868. https://doi.org/10.1016/j.fuproc.2011.05.002

    Article  CAS  Google Scholar 

  31. Chatla, A., Ghouri, M.M., El Hassan, O.W., Mohamed, N., Prakash, A.V., and Elbashir, N.O., Appl. Catal. A: Gen., 2020, vol. 602, p. 117699. https://doi.org/10.1016/j.apcata.2020.117699

    Article  CAS  Google Scholar 

  32. Franz, R., Pinto, D., Uslamin, E.A., Urakawa, A., and Pidko, E.A., ChemCatChem, 2021, vol. 13, p. 5034. https://doi.org/10.1002/cctc.202101080

    Article  CAS  Google Scholar 

  33. Franz, R., Kühlewind, T., Shterk, G., Abou-Hamad, E., Parastaev, A., Uslamin, E., Hensen, E.J.M., Kapteijn, F., Gascon, J., and Pidko, E.A., Catal. Sci. Technol., 2020, vol. 10, p. 3965. https://doi.org/10.1039/D0CY00817F

    Article  CAS  Google Scholar 

  34. Zhang, X., Vajglova, Z., Mäki-Arvela, P., Peurla, M., Palonen, H., Murzin, D.Yu., Tungatarova, S.A., Baizhumanova, T.S., and Aubakirov, Y.A., ChemistrySelect, 2021, vol. 6, p. 3424. https://doi.org/10.1002/slct.202100686

    Article  CAS  Google Scholar 

  35. Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., and Varma, R.S., Chem. Rev., 2016, vol. 116, p. 3722. https://doi.org/10.1021/acs.chemrev.5b00482

    Article  CAS  PubMed  Google Scholar 

  36. Wang, M., Fu, Z., and Yang, Z., Phys. Lett. A, 2013, vol. 377, p. 2189. https://doi.org/10.1016/j.physleta.2013.05.054

    Article  CAS  Google Scholar 

  37. An, W., Zeng, X.C., and Turner, C.H., J. Chem. Phys., 2009, vol. 131, p. 174702. https://doi.org/10.1063/1.3254383

    Article  CAS  PubMed  Google Scholar 

  38. Omran, A., Yoon, S.H., Khan, M., Ghouri, M., Chatla, A., and Elbashir, N., Catalysts, 2020, vol. 10, p. 1043. https://doi.org/10.3390/catal10091043

    Article  CAS  Google Scholar 

  39. Qiu, H., Ran, J., Niu, J., Guo, F., and Ou, Z., Mol. Catal., 2021, vol. 502, p. 111360. https://doi.org/10.1016/j.mcat.2020.111360

    Article  CAS  Google Scholar 

  40. Liu, H., Zhang, R., Yan, R., Li, J., Wang, B., and Xie, K., Appl. Surf. Sci., 2012, vol. 258, p. 8177. https://doi.org/10.1016/j.apsusc.2012.05.017

    Article  CAS  Google Scholar 

  41. Zhang, R., Guo, X., Wang, B., and Ling, L., J. Phys. Chem., vol. 119, p. 14135. https://doi.org/10.1021/acs.jpcc.5b03868

  42. Xiao, Z., Hou, F., Zhang, J., Zheng, Q., Xu, J., Pan, L., Wang, L., Zou, J., Zhang, X., and Li, G., ACS Appl. Mater. Interfaces, 2021, vol. 13, p. 48838. https://doi.org/10.1021/acsami.1c14918

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J.-H., Lee, E.-G., Joo, O.-S., and Jung, K.-D., Appl. Catal. A: Gen., 2004, vol. 269, p. 1. https://doi.org/10.1016/j.apcata.2004.01.035

    Article  CAS  Google Scholar 

  44. Chen, H.-W., Wang, C.-Y., Yu, C.-H., Tseng, L.-T., and Liao, P.-H., Catal. Today, 2004, vol. 97, p. 173. https://doi.org/10.1016/j.cattod.2004.03.067

    Article  CAS  Google Scholar 

  45. Wu, T., Cai, W., Zhang, P., Song, X., and Gao, L., RSC Adv., 2013, vol. 3, p. 23976. https://doi.org/10.1039/c3ra43203c

    Article  CAS  Google Scholar 

  46. Li, B., Xu, Z., Jing, F., Luo, S., Wang, N., and Chu, W., J. Energy Chem., 2016, vol. 25, p. 1078. https://doi.org/10.1016/j.jechem.2016.11.001

    Article  Google Scholar 

  47. Nataj, S.M.M., Alavi, S.M., and Mazloom, G., J. Energy Chem., 2018, vol. 27, p. 1475. https://doi.org/10.1016/j.jechem.2017.10.002

    Article  Google Scholar 

  48. Song, K., Lu, M., Xu, S., Chen, C., Zhan, Y., Li, D., Au, C., Jiang, L., and Tomishige, K., Appl. Catal. B: Environ., 2018, vol. 239, p. 324. https://doi.org/10.1016/j.apcatb.2018.08.023

    Article  CAS  Google Scholar 

  49. Rezaei, R., Moradi, G., and Sharifnia, S., Energy Fuels, 2019, vol. 33, p. 6689. https://doi.org/10.1021/acs.energyfuels.9b00692

    Article  CAS  Google Scholar 

  50. Yang, Y., Lin, Y.-A., Yan, X., Chen, F., Shen, Q., Zhang, L., and Yan, N., ACS Appl. Energy Mater., 2019, vol. 2, p. 8894. https://doi.org/10.1021/acsaem.9b01923

    Article  CAS  Google Scholar 

  51. Han, K., Wang, S., Liu, Q., and Wang, F., ACS Appl. Nano Mater., 2021, vol. 4, p. 5340. https://doi.org/10.1021/acsanm.1c00673

    Article  CAS  Google Scholar 

  52. Han, K., Wang, S., Hu, N., Shi, W., and Wang, F., ACS Appl. Mater. Interfaces, 2022, vol. 14, p. 23487. https://doi.org/10.1021/acsami.2c03757

    Article  CAS  Google Scholar 

  53. Rahemi, N., Haghighi, M., Babaluo, A.A., Allahyari, S., and Jafari, M.F., Energy Convers. Manage., 2014, vol. 84, p. 50. https://doi.org/10.1016/j.enconman.2014.04.016

    Article  CAS  Google Scholar 

  54. Wu, T., Zhang, Q., Cai, W., Zhang, P., Song, X., Sun, Z., and Gao, L., Appl. Catal. A: Gen., 2015, vol. 503, p. 94. https://doi.org/10.1016/j.apcata.2015.07.012

    Article  CAS  Google Scholar 

  55. Bian, Z., Das, S., Wai, M.H., Hongmanorom, P., and Kawi, S., ChemPhysChem, 2017, vol. 18, p. 3117. https://doi.org/10.1002/cphc.201700529

    Article  CAS  PubMed  Google Scholar 

  56. Kolganov, A.A., Gabrienko, A.A., Chernyshov, I.Yu., Stepanov, A.G., and Pidko, E.A., Phys. Chem. Chem. Phys., 2022, vol. 24, p. 6492. https://doi.org/10.1039/D1CP05854A

    Article  CAS  PubMed  Google Scholar 

  57. Dehnen, S., Schlafer, A., Fenske, D., and Ahlrichs, R., Angew. Chem., 1994, vol. 106, p. 786. https://doi.org/10.1002/ange.19941060713

    Article  CAS  Google Scholar 

  58. Dehnen, S., Fenske, D., and Deveson, A.C., J. Cluster Sci., 1996, vol. 7, p. 351. https://doi.org/10.1007/BF01171188

    Article  CAS  Google Scholar 

  59. Pichugina, D.A., Kuz’menko, N.E., and Shestakov A.F., Russ. Chem. Rev., 2015, vol. 84, p. 1114. https://doi.org/10.1070/RCR4493

    Article  CAS  Google Scholar 

  60. Perdew, J.P., Ernzerhof, M., and Burke, K., J. Chem. Phys., 1996, vol. 105, p. 9982. https://doi.org/10.1063/1.472933

    Article  CAS  Google Scholar 

  61. Laikov, D.N., Chem. Phys. Lett., 2005, vol. 416, p. 116. https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  62. Schlegel, H.B., J. Comput. Chem., 1982, vol. 3, p. 214. https://doi.org/10.1002/jcc.540030212

    Article  CAS  Google Scholar 

  63. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., 2005, no. 3, p. 820.

  64. Chen, T., Fang, L., Luo, W., Meng, Y., Xue, J., Xia, S., and Ni, Z., Chem. J. Chin. Univ., 2019, vol. 40, p. 2135. https://doi.org/10.7503/cjcu20190267

    Article  CAS  Google Scholar 

  65. Zhang, L., Meng, Y., Yang, J., Shen, H., Yang, C., Xie, B., and Xia, S., Fuel, 2021, vol. 303, p. 121263. https://doi.org/10.1016/j.fuel.2021.121263

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by regular institutional funding, and no additional grants were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Bandurist.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Abbreviations and notation: DRM, dry reforming of methane; PBE, Perdew–Burke–Ernzerhof functional; XRD, X-ray powder diffraction analysis; IRC, intrinsic reaction coordinate; I, pre-reaction complex or intermediate; TS, transition state; R, product.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandurist, P.S., Pichugina, D.A. Quantum-Chemical Study of C–H Bond Activation in Methane on Ni–Cu Oxide and Sulfide Clusters. Kinet Catal 64, 362–370 (2023). https://doi.org/10.1134/S0023158423040018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423040018

Keywords:

Navigation