Skip to main content
Log in

Development of Carbon–Silica Composite Materials and Their Studying and Testing for Preparing Heterogeneous Biocatalysts for the Low-Temperature Synthesis of Esters

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Carbon–silica composite materials (CSCMs) containing different amounts of silica and carbon components are obtained using two silica precursors (silica sol and silane) and multiwalled carbon nanotubes (MWNTs). At the initial stage of obtaining CSCMs by method 1, a fine MWNT powder is subjected to impregnation by moisture capacity with silica sol; in accordance with method 2, MWNTs are treated with tetraethoxysilane and then subjected to hydrolysis and polycondensation. The silica (SiO2) content in the composites is varied in a range of 3–60 wt %. After drying and an appropriate heat treatment at 250–350°C, the composite materials are studied by various physicochemical methods, namely, nitrogen porosimetry, electron microscopy, X-ray fluorescence analysis, and thermogravimetric analysis. It is found that the parameters, including texrural characteristics, significantly differ depending on the chemical composition of the CSCMs. Thus, with an increase in the SiO2 content, the specific surface area of the composite materials increases (by a factor of 2) and the pore diameter distribution curves exhibit maxima (at 20–40 nm). The composite materials are studied as adsorbing supports for preparing heterogeneous biocatalysts (BCs) for the low-temperature synthesis of esters, in which the active component is lipase immobilized exclusively on the carbon surface of the nanotubes. With a decrease in the MWNT content in the composite materials, the enzyme activity and operational stability of the BCs, which are measured in the esterification of heptanoic acid (С7) with butanol (С4), monotonically decrease; at the maximum SiO2 content (58 wt %), the activity decreases by a factor of 2–8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Zhukalin, D.A., Tuchin, A.V., Goloshchapov, D.A., and Bityutskaya, L.A., Pis’ma Zh. Tekh. Fiz., 2015, vol. 41, no. 4, p. 1.

    Google Scholar 

  2. Ivanov, S.I., Tsygankov, P.Yu., Khudeev, N.V., and Men’shutina, N.V., Khim. Khim. Tekhnol., 2015, vol. 29, no. 4, p. 83.

    Google Scholar 

  3. Belous, D.D., Makarova, I.S., Tsygankov, P.Yu., Gordienko, M.G., and Kon’kova, T.V., Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 6, p. 124.

    Google Scholar 

  4. Khudeev, I.I., Tsygankov, P.Yu., Smirnova, O.A., Ivanov, S.I., and Men’shutina, N.V., Usp. Khim. Khim. Tekhnol., 2017, vol. 31, no. 6, p. 118–120.

    Google Scholar 

  5. Klimov, E.S., Buzaeva, M.V., Davydova, O.A., Isaev, A.V., Nishchev, K.N., Pynenkov, A.A., Kalashnikov, E.G., Fomin, A.N., and Svetukhin, V.V., Russ. J. Appl. Chem., 2015, vol. 88, no. 8, p. 1229.

    Article  CAS  Google Scholar 

  6. Chesnokov, V.V., Parmon, V.N., and Chichkan’, A.S., RF Patent No. 2516409 S2, 2014.

  7. Izawa, T., Arif, A.F., Taniguchi, S., Kamikubo, K., Iwasaki, H., and Ogi, T., Mater. Res. Bull., 2019, vol. 112, p. 16.

    Article  CAS  Google Scholar 

  8. Ramasamy, D.L., Puhakka, V., Doshi, B., Iftekhar, S., and Sillanpää, M., Chem. Eng. J., 2019, vol. 365, p. 291.

    Article  CAS  Google Scholar 

  9. Ebrahim, A.M., Levasseur, B., and Bandosz, T.J., Langmuir, 2013, vol. 29, no. 23, p. 6895.

    Article  CAS  PubMed  Google Scholar 

  10. Kovalenko, G.A., Perminova, L.V., Chuenko, T.V., and Rudina, N.A., Curr. Top. Catal., 2012, vol.10, p. 131.

    CAS  Google Scholar 

  11. Kovalenko, G.A., Perminova, L.V., and Sapunova, L.I., A peculiar method for immobilization of non-growing microbial cells by entrapment into silica xerogel, in Biotechnology in Medicine, Foodstuffs, Biocatalysis, Environment and Biogeotechnology, New York: NOVA Science, 2010, p. 41.

    Google Scholar 

  12. Perminova, L.V., Kovalenko, G.A., Beklemishev, A.B., Mamaev, A.L., Pykhtina, M.B., and Rudina, N.A., Prikl. Biokhim. Mikrobiol., 2018, vol. 54, no. 1, p. 46.

    Google Scholar 

  13. Kovalenko, G.A., Beklemishev, A.B., Perminova, L.V., Mamaev, A.L., Rudina, N.A., Mossenkov, S.I., and Kuznetsov, V.L., J. Mol. Catal. B: Enzym., 2013, vol. 98, p. 78.

    Article  CAS  Google Scholar 

  14. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Yakovleva, E.Yu., and Pykhtina, M.B., Katal. Prom-sti, 2014, no. 7, p. 83.

  15. Tao, J. and Kazlauskas, R., Biocatalysis for Green Chemistry and Chemical Process Development, New York: Wiley, 2011, p. 479.

    Book  Google Scholar 

  16. Stergiou, P.-Y., Foukis, A., Filippou, M., Koukouritaki, M., Parapouli, M., Theodorou, L.G., Hatziloukas, E., Afendra, A., Pandey, A., and Papamichael, E.M., Biotechnol. Adv., 2013, vol. 31, p. 1846.

    Article  CAS  PubMed  Google Scholar 

  17. Luna, C., Garson-Perez, V., Lopez-Tenllado, F.J., Baustista, F.M., Verdugo-Escamilla, C., Aguado-Dedlas, L., Calero, J., Romero, A.A., Luna, D., and Estever, R., Catalysts, 2021, vol. 11, p. 1350. https://doi.org/10.3390/catal11111350

    Article  CAS  Google Scholar 

  18. Pereira, A.S., Souza, A.H., Fraga, J.L., Villeneuve, P., Torres, A.G., and Amaral, P.F.F., Catalysts, 2022, vol. 12, p. 88. https://doi.org/10.3390/catal12010088

    Article  CAS  Google Scholar 

  19. Kovalenko, G.A., Perminova, L.V., Krasnikov, D.V., and Kuznetsov, V.L., J. Porous Mater., 2018, vol. 25, p. 1017.

    Article  CAS  Google Scholar 

  20. Kovalenko, G.A., Perminova, L.V., and Beklemishev, A.B., React. Kinet. Mech. Catal., 2019, vol. 128, p. 479. https://doi.org/10.1007/s11144-019-01648-z

    Article  CAS  Google Scholar 

  21. Kovalenko, G.A., Perminova, L.V., Pykhtina, M.B., and Beklemishev, A.B., Biocatal. Agric. Biotechnol., 2021, vol. 36. 102124. https://doi.org/10.1016/j.bcab.2021.102124

    Article  CAS  Google Scholar 

  22. Kovalenko, G.A., Perminova, L.V., Pykhtina, M.B., and Beklemishev, A.B., Catal. Today, 2021, vol. 379, p. 36. https://doi.org/10.1016/j.cattod.2020.11.018

    Article  CAS  Google Scholar 

  23. Kovalenko, G.A., Perminova, L.V., Shashkov, M.V., and Beklemishev, A.B., Kinet. Catal., 2022, vol. 63, no. 2, p. 188. https://doi.org/10.31857/S0453881122020046

    Article  CAS  Google Scholar 

  24. Kuznetsov, V.L., Krasnikov, D.V., Schmakov, A.N., and Elumeeva, K.V., Phys. Status Solidi B, 2012, vol. 249, no. 12, p. 2390. https://doi.org/10.1002/pssb.201200120

    Article  CAS  Google Scholar 

  25. Beklemishev, A.B., Pykhtina, M.B., Perminova, L.V., and Kovalenko, G.A., Biotekhnol., 2021, vol. 37, no. 5, p. 5. https://doi.org/10.21519/0234-2758-2021-37-5-5-62

    Article  Google Scholar 

  26. Bearden, J., Biochim. Biophys. Acta, 1978, vol. 533, p. 525.

    Article  CAS  PubMed  Google Scholar 

  27. Iler, R.K., The Chemistry of Silica, New York: John & Sons, 1979.

    Google Scholar 

  28. Ammaeva, Sh.G., Isaev, A.B., and Kharlamova, T.A., Chem. Probl., 2021, vol. 19, no. 1, p. 56. https://doi.org/10.32737/2221-8688-2021-1-56-63

    Article  Google Scholar 

  29. Mazov, I.N., Kuznetsov, V.L., Simonova, I.A., Stadnichenko, A.I., Ishchenko, A.V., Romanenko, A.I., Tkachev, E.N., and Anikeeva, O.B., Appl. Surf. Sci., 2012, vol. 258, no. 17, p. 6272. https://doi.org/10.1016/j.apsusc.2012.03.021

    Article  CAS  Google Scholar 

  30. Kovalenko, G.A., Perminova, L.V., Beklemishev, A.B., Pykhtina, M.B., Kholyavka, M.G., Buchel’nikova, V.A., and Artyukhov, V.G., Prikl. Biokhim. Mikrobiol., 2022, vol. 58, no. 5, p. 446.

    Google Scholar 

  31. Turati, D.F.M., Morais, W.G.,Jr., Terrasan, C.R.F., Moreno-Perez, S., Pessela, B.C., Fernandez-Lorente, G., Guisan, J.M., and Carmona, E.C., Molecules, 2017, vol. 22, p. 339.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Silveira, E.A., Moreno-Perez, S., Basso, A., Serban, S., Mamede, R.P., Tardioli, P.W., Farinas, C.S., Rocha-Martin, J., Fernandez-Lorente, G., and Guisan, J.M., BMC Biotechnol., 2017, vol. 17, p. 88.

    Article  CAS  Google Scholar 

  33. Rodrigues, R.C., Ortiz, V., Santos, J.C.S., Berenguer-Murcia, A., Alcantara, A.R., Barbosa, O., Ortiz, C., and Fernandez-Lafuente, R., Biotechnol. Adv., 2019, vol. 37, p. 746. https://doi.org/10.1016/j.biotechadv.2019.04.003

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank G.G. Ivanova for developing CSCMs of various compositions by the impregnation method (method 1) and the staff of Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences for taking part in the physicochemical studies of carbon–silica composites, in particular, by electron microscopy, NP, XRF, and TA.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences (project no. AAAA-A21-121011390007-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kovalenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations and notation: CNTs, carbon nanotubes; MWNTs, multiwalled carbon nanotubes; MWNTsox, oxidized multiwalled carbon nanotubes; CSCMs, carbon–silica composite materials containing MWNTs; CoxSCMs, carbon–silica composite materials containing MWNTsox; BC, biocatalyst; FA, fatty acid; EAS, enzyme-active substance; NP, nitrogen porosimetry; TA, thermal analysis; XRF, X-ray fluorescence analysis; SEM, scanning electron microscopy; HRTEM, high-resolution transmission electron microscopy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalenko, G.A., Perminova, L.V., Goidin, V.V. et al. Development of Carbon–Silica Composite Materials and Their Studying and Testing for Preparing Heterogeneous Biocatalysts for the Low-Temperature Synthesis of Esters. Kinet Catal 64, 201–214 (2023). https://doi.org/10.1134/S0023158423020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158423020039

Keywords:

Navigation