Skip to main content
Log in

Kinetics of the oxidation of N-aminopiperidine with chloramine

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the oxidation of N-aminopiperidine with chloramine was studied at different temperatures, with variable concentrations of the two reactants and at a pH ranging between 12 and 13.5. The reaction showed to be involving two steps: the first corresponded to the formation of a diazene intermediate, the second to the evolution of this intermediate into numerous compounds within a complex reactional chain. The rate law of the first step was determined by the Ostwald method and found to be first order with respect to each reactant. The rate constant was determined at pH 12.89 and T = 255°C: k 2 = 1.15 × 105 exp(−39/RT) l mol−1 s−1 (E 2 in kJ/mol). With decreasing pH value, the first exhibited acid catalysis phenomena, and diazene was converted into azopiperidine particularly faster. This created overlapping UV-absorptions between chloramine and azopiperidine, also observed in HPLC. GC/MS analyses were used to identify some of the numerous by-products formed. Their proportions are dependent of both pH and the reactants’ concentrations ratio. A reaction mechanism taking this relationship into account was suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wright, J.B. and Willette, R.E., J. Med. Pharm. Chem., 1962, vol. 5, p. 815.

    Article  CAS  Google Scholar 

  2. Hanna, C. and Schueler, F.W., J. Am. Chem. Soc., 1952, vol. 74, p. 3693.

    Article  CAS  Google Scholar 

  3. French Patent 1400256.

  4. Smith, P.A.S. and Pars, H.G., J. Org. Chem., 1959, vol. 24, p. 1325.

    Article  CAS  Google Scholar 

  5. Lunn, G., Sansone, E.B., and Keefer, L.K., J. Org. Chem., 1984, vol. 49, p. 3470.

    Article  CAS  Google Scholar 

  6. Podgornaya, I.V., Tayusheva, N.N., and Postovskii, I.Y., Zh. Obshch. Khim., 1964, vol. 34, p. 2521.

    CAS  Google Scholar 

  7. Netherlands Patent 6510107, 1966.

  8. Belgian Patent 812749, 1974.

  9. US Patent 3317607, 1967.

  10. US Patent 2979505, 1961.

  11. US Patent 3154538, 1964.

  12. Zimmer, H., Audrieth, L.F., Zimmer, M., and Rowe, R.V., J. Am. Chem. Soc., 1955, vol. 77, p. 790.

    Article  CAS  Google Scholar 

  13. GDR Patent 76520, 1970.

  14. Ohme, R. and Preuschhof, H., J. Prakt. Chem., 1970, vol. 312, p. 349.

    Article  CAS  Google Scholar 

  15. Murakami, Y., Yokoyama, Y., Sasakura, C., and Tamagawa, M., Chem. Pharm. Bull., 1983, vol. 31, p. 423.

    CAS  Google Scholar 

  16. Ohme, R. and Preuschhof, H., Liebigs Ann. Chem., 1968, vol. 713, p. 74.

    Article  CAS  Google Scholar 

  17. European Patent 850930, 1998.

  18. Japanese Patent 183250, 2003.

  19. Raschig, F., Chem.-Ztg., 1907, vol. 31, p. 926.

    Google Scholar 

  20. Raschig, F., Ber. Dtsch. Chem. Ges., 1907, vol. 40, p. 4580.

    Article  CAS  Google Scholar 

  21. Darwich, C., Dissertation, Lyon: Claude Bernard Univ. Lyon I, 2005.

    Google Scholar 

  22. Ferriol, M., Gazet, J., and Rizk-Ouaini, R., Anal. Chim. Acta, 1990, vol. 231, p. 161.

    Article  CAS  Google Scholar 

  23. Elkhatib, M., Peyrot, L., Scharff, J.P., and Delalu, H., Int. J. Chem. Kinet., 1998, vol. 30, p. 129.

    Article  CAS  Google Scholar 

  24. Elkhatib, M., Marchand, A., Counioux, J.J., and Delalu, H., Int. J. Chem. Kinet., 1995, vol. 27, p. 757.

    Article  CAS  Google Scholar 

  25. Delalu, H., Dissertation, Lyon: Claude Bernard Univ. Lyon I, 1977.

    Google Scholar 

  26. Anbar, M. and Yagil, G., J. Am. Chem. Soc., 1962, vol. 84, p. 1790.

    Article  CAS  Google Scholar 

  27. Yagil, G. and Anbar, M., J. Inorg. Nucl. Chem., 1964, vol. 26, p. 453.

    Article  CAS  Google Scholar 

  28. McCoy, R.E., J. Am. Chem. Soc., 1954, vol. 76, p. 1447.

    Article  CAS  Google Scholar 

  29. Lenoble, W.J., Tetrahedron Lett., 1966, vol. 7, p. 727.

    Article  Google Scholar 

  30. Elkhatib, M., Duriche, C., Peyrot, L., Metz, R., and Delalu, H., Int. J. Chem. Kinet., 2002, vol. 34, p. 515.

    Article  CAS  Google Scholar 

  31. Lemal, D.M., in Nitrenes, Lwowski, W., Ed., New York: Wiley-Interscience, 1970, p. 345.

    Google Scholar 

  32. Schmidt, E.W., Hydrazine and Its Derivatives: Preparation, Properties, Application, New York: Wiley, 1984.

    Google Scholar 

  33. Peyrot, L., Elkhatib, M., Vignalou, J.R., Metz, R., Elomar, F., and Delalu, H., J. Heterocycl. Chem., 2001, vol. 38, p. 885.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Darwich.

Additional information

Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 1, pp. 112–119.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darwich, C., Elkhatib, M., Steinhauser, G. et al. Kinetics of the oxidation of N-aminopiperidine with chloramine. Kinet Catal 50, 103–110 (2009). https://doi.org/10.1134/S0023158409010145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158409010145

Keywords

Navigation