Skip to main content
Log in

Effect of active impurities on the condensation of nanoparticles from supersaturated carbon vapor in the combined laser photolysis of C3O2 and H2S

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The effect of active H2S, HS·, and atomic hydrogen impurities on the condensation of highly supersaturated carbon vapor obtained in the combined laser photolysis of a mixture of C3O2 and H2S diluted with argon was studied. The concentrations of carbon vapor, HS·, and atomic hydrogen obtained in the laser photolysis of the mixture were determined using the absorption cross sections of C3O2 and H2S molecules measured in this work and the measured amount of absorbed laser radiation. The time profiles of the sizes of growing nanoparticles synthesized in C3O2 + Ar and C3O2 + H2S + Ar mixtures were measured using the laser-induced incandescence (LII) method. An improved LII model was developed, which simultaneously took into account the heating and cooling of nanoparticles and the temperature dependence of the thermophysical properties of nanoparticles, as well as the cooling of nanoparticles by evaporation and thermal emission. The size distributions of carbon nanoparticles formed in the presence and absence of active impurities were determined with the use of a transmission electron microscope. The final average size of carbon nanoparticles was found to decrease from 12 to 9 nm upon the addition of H2S to the system, whereas the rate of nanoparticle growth decreased by a factor of 3, and the properties of nanoparticles changed. In particular, the translational energy accommodation coefficient for Ar molecules at the surface of carbon nanoparticles was found to decrease from 0.44 to 0.30. A comparison of the calculated total carbon balance at the early stage of nanoparticle formation with experimental data demonstrated that the reaction C + H2S → HCS· + H, which removes a portion of carbon vapor from the condensation process, has a determining effect on the carbon balance in the system. It was found that HS· and atomic hydrogen affect the carbon balance in the system only slightly. Thus, the experimentally observed decrease in the rate of nanoparticle growth and in the sizes of nanoparticles can be explained by a decrease in the concentration of free carbon upon the addition of H2S molecules to the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schofield, K., Combust. Flame, 2001, vol. 124, p. 137.

    Article  CAS  Google Scholar 

  2. Petzold, A., Gysel, M., Vancassel, X., Hitzenberger, R., Puxbaum, H., Vrochticky, S., Weingartner, E., Baltensperger, U., and Mirabel, P., Atmos. Chem. Phys., 2005, vol. 5, p. 3187.

    Article  CAS  Google Scholar 

  3. Yamada, M., Osamura, Y., and Kaiser, R.I., Astron. Astrophys., 2002, vol. 395, p. 1031.

    Article  CAS  Google Scholar 

  4. Starikovsky, A., Thienel, Th., Wagner, H.Gg., and Zaslonko, I., Ber. Bunsen-Ges. Phys. Chem., 1998, vol. 102, p. 1815.

    CAS  Google Scholar 

  5. Dorge, K.J., Tanke, D., and Wagner, H.Gg., Z. Phys. Chem., 1999, vol. 212, p. 219.

    CAS  Google Scholar 

  6. Frenklach, M., Proc. Combust. Inst., 1996, vol. 26, p. 2285.

    Google Scholar 

  7. Friedrichs, G. and Wagner, H.Gg., Z. Phys. Chem., 1998, vol. 203, p. 1.

    CAS  Google Scholar 

  8. Vagner, Kh.G., Vlasov, P.A., Derge, K.Yu., Eremin, A.V., Zaslonko, I.S., and Tanke, D., Kinet. Katal., 2001, vol. 42, no. 5, p. 645 [Kinet. Catal. (Engl. Transl.), vol. 42, no. 5, p. 583].

    Google Scholar 

  9. Vagner, Kh.G., Emel’yanov, A.V., Eremin, A.V., and Yander, Kh., Kinet. Katal., 2003, vol. 44, no. 4, p. 509 [Kinet. Catal. (Engl. Transl.), vol. 44, no. 4, p. 463].

    Google Scholar 

  10. Starke, R., Kock, B., Roth, P., Eremin, A., Gurentsov, E., Shumova, V., and Ziborov, V., Combust. Flame, 2003, vol. 132, p. 77.

    Article  Google Scholar 

  11. Emelianov, A., Eremin, A., Jander, H., and Wagner, H.Gg., Z. Phys. Chem., 2003, vol. 217, p. 1361.

    CAS  Google Scholar 

  12. Eremin, A.V., Gurentsov, E.V., Hofmann, M., Kock, B., and Schulz, Ch., Appl. Phys. B, 2006, vol. 83, p. 449.

    Article  CAS  Google Scholar 

  13. Okabe, H., Photochemistry of Small Molecules, New York: Wiley, 1978, p. 319.

    Google Scholar 

  14. Melton, L.A., Appl. Opt., 1984, vol. 23, p. 2201.

    Article  CAS  Google Scholar 

  15. Roth, P. and Filippov, A.V., J. Aerosol Sci., 1996, vol. 27, p. 95.

    Article  CAS  Google Scholar 

  16. Filippov, A.V., Marcus, M.W., and Roth, P., J. Aerosol Sci., 1999, vol. 30, p. 71.

    Article  CAS  Google Scholar 

  17. Mewes, B. and Seitzman, J.M., Appl. Opt., 1997, vol. 36, p. 709.

    Article  CAS  Google Scholar 

  18. Filippov, A.V. and Rosner, D.E., Int. J. Heat Mass Transfer, 2000, vol. 43, p. 127.

    Article  CAS  Google Scholar 

  19. Starke, R., Kock, B., and Roth, P., Shock Waves, 2003, vol. 12, p. 351.

    Article  Google Scholar 

  20. Gurentsov, E.V., Eremin, A.V., Shtarke, R., and Rott, P., Kinet. Katal., 2005, vol. 46, no. 3, p. 333 [Kinet. Catal. (Engl. Transl.), vol. 46, no. 3, p. 309].

    Article  Google Scholar 

  21. Eremin, A., Kokk, B., Rott, P., Shtarke, R., and Shumova, V., Khim. Fiz., 2004, vol. 23, no. 9, p. 72.

    Google Scholar 

  22. Michelsen, H.A., J. Chem. Phys., 2003, vol. 118, p. 7012.

    Article  CAS  Google Scholar 

  23. Smyth, K.C. and Shaddix, C.R., Combust. Flame, 1996, vol. 107, p. 314.

    Article  CAS  Google Scholar 

  24. Kock, B.F., Kayan, C., Knipping, J., Orthner, H.R., and Roth, P., Proc. Combust. Inst., 2004, vol. 30, p. 1689.

    Article  CAS  Google Scholar 

  25. Williams, M.R. and Loyalka, S.K., Aerosol Science: Theory and Practice, Oxford: Pergamon, 1991, p. 309.

    Google Scholar 

  26. Snelling, D.R., Liu, F., Smallwood, G.J., and Gulder, O.L., Combust. Flame, 2004, vol. 136, p. 180.

    Article  CAS  Google Scholar 

  27. Smallwood, G.J., Snelling, D.R., Liu, F., and Gulder, O.L., Trans. Am. Soc. Mech. Eng., J. Heat Transfer, 2001, vol. 123, p. 814.

    Article  Google Scholar 

  28. Leider, H.R., Krikorian, O.H., and Young, D.A., Carbon, 1973, vol. 11, p. 555.

    Article  CAS  Google Scholar 

  29. Butland, A.T.D. and Maddison, R.J., J. Nucl. Mater., 1973, vol. 49, p. 45.

    Article  CAS  Google Scholar 

  30. Lehre, T., Jungfleisch, B., Suntz, R., and Bockhorn, H., Appl. Opt., 2003, vol. 42, p. 2021.

    Article  Google Scholar 

  31. Karasev, B.V., Priroda, 1995, no. 11, p. 41.

  32. Gurentsov, E.V., Eremin, A.V., and Shul’ts, K., Kinet. Katal., 2007, vol. 48, no. 2, p. 210 [Kinet. Catal. (Engl. Transl.), vol. 48, no. 2, p. 194].

    Article  Google Scholar 

  33. Martinotti, F.F., Welch, M.J., and Wolf, A.P., Chem. Commun., 1968, vol. 3, p. 115.

    Google Scholar 

  34. Dean, A.J., Davidson, D.F., and Hanson, R.K., J. Phys. Chem., 1991, vol. 95, p. 183.

    Article  CAS  Google Scholar 

  35. Haider, N. and Husain, D., J. Chem. Soc., Faraday Trans., 1993, vol. 89, p. 7.

    Article  CAS  Google Scholar 

  36. Kaiser, R.I., Sun, W., and Suits, A.G., J. Chem. Phys., 1997, vol. 106, p. 5288.

    Article  CAS  Google Scholar 

  37. Galland, N., Caralp, F., and Rayez, M.-T., Hannachi, Y., Loison, J.-C., Dorthe, G., and Bergeat, A., J. Phys. Chem. A, 2001, vol. 105, p. 9893.

    Article  CAS  Google Scholar 

  38. Lynch, K.P., Schwab, T.C., and Michael, J.V., Int. J. Chem. Kinet., 1976, vol. 8, p. 651.

    Article  CAS  Google Scholar 

  39. Husain, D. and Slater, N.K.H., J. Chem. Soc., Faraday Trans., 1980, vol. 76, p. 276.

    Article  CAS  Google Scholar 

  40. Nicholas, J.E., Amodio, C.A., and Baker, M.J., J. Chem. Soc., Faraday Trans., 1979, vol. 75, p. 1868.

    Article  CAS  Google Scholar 

  41. Hochanadel, C.J., Sworski, T.J., and Ogren, P.J., J. Phys. Chem., 1980, vol. 84, p. 231.

    Article  CAS  Google Scholar 

  42. Becker, K.H., Engelhardt, B., and Wiesen, P., Chem. Phys. Lett., 1989, vol. 154, p. 342.

    Article  CAS  Google Scholar 

  43. Yee Quee, M.J. and Thynne, J.C.J., Ber. Bunsen-Ges. Phys. Chem., 1968, vol. 72, p. 211.

    CAS  Google Scholar 

  44. Faubel, C. and Wagner, H.Gg., Ber. Bunsen-Ges. Phys. Chem., 1977, vol. 81, p. 684.

    CAS  Google Scholar 

  45. Stachnik, R.A. and Molina, M.J., J. Phys. Chem., 1987, vol. 91, p. 4603.

    Article  CAS  Google Scholar 

  46. Braun, W., McNesby, J.R., and Bass, A.M., J. Chem. Phys., 1967, vol. 46, p. 2071.

    Article  CAS  Google Scholar 

  47. Fulle, D. and Hippler, H., J. Chem. Phys., 1997, vol. 106, p. 8691.

    Article  CAS  Google Scholar 

  48. Taatjes, C.A., J. Chem. Phys., 1997, vol. 106, p. 1786.

    Article  CAS  Google Scholar 

  49. David, D.C. and Moore, C.B., J. Phys. Chem., 1995, vol. 99, p. 13467.

    Article  Google Scholar 

  50. Devriendt, K., van Poppel, M., Boullart, W., and Peeters, J., J. Phys. Chem., 1995, vol. 99, p. 16953.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gurentsov.

Additional information

Original Russian Text © E.V. Gurentsov, A.V. Eremin, C. Schulz, 2008, published in Kinetika i Kataliz, 2008, Vol. 49, No. 2, pp. 179–189.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurentsov, E.V., Eremin, A.V. & Schulz, C. Effect of active impurities on the condensation of nanoparticles from supersaturated carbon vapor in the combined laser photolysis of C3O2 and H2S. Kinet Catal 49, 167–177 (2008). https://doi.org/10.1134/S002315840802002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315840802002X

Keywords

Navigation