Skip to main content
Log in

Synthesis and Structure of an o-Quinone Based Cuban Copper Complex with a Benzoxazole Substituent

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel sterically hindered o-benzoquinone 4,6-di-tert-butyl-3-(5,7-di-tert-butylbenzooxazole-2-yl)-o-benzoquinone containing a benzoxazole moiety is prepared. The interaction of this quinone with Cu(0) yielded a cubane copper(II) complex with a Cu4O4 core. Molecular and crystal structures of the o-quinone (CCDC 2269708) and the copper complex (CCDC 2269709) are determined by XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

REFERENCES

  1. A. V. Pestov, P. A. Slepukhin, and V. N. Charushin. Copper and nickel chelate complexes with polydentate N,O-ligands: structure and magnetic properties of polynuclear complexes. Russ. Chem. Rev., 2015, 84, 310-333. https://doi.org/10.1070/RCR4461

    Article  Google Scholar 

  2. B. Yang, J. Pan, X. Meng, J. Cao, Y. Li, F. Xiao, and D. Li. Tetracopper complexes with two-mode cubane-like Cu4O4 core from similar hydroxyl-rich salicylaldehyde Schiff bases: Structure and magnetic properties. Polyhedron, 2016, 110, 182-187. https://doi.org/10.1016/j.poly.2016.02.042

    Article  CAS  Google Scholar 

  3. R. R. Tripathy, S. Singha, and S. Sarkar. A review on bio-functional models of catechol oxidase probed by less explored first row transition metals. J. Coord. Chem., 2022, 75, 1967-2017. https://doi.org/10.1080/00958972.2022.2122053

    Article  CAS  Google Scholar 

  4. E. I. Solomon, D. E. Heppner, E. M. Johnston, J. W. Ginsbach, and J. Cirera. Copper active sites in biology. Chem. Rev., 2014, 114, 3659-3853. https://doi.org/10.1021/cr400327t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. Jiang, J. Li, B. Yang, X.-Z. Wei, B.-W. Dong, Y. Kao, M.-Y. Huang, C.-H. Tung, and L.-Z. Wu. A bio-inspired Cu4O4 cubane: Effective molecular catalysts for electrocatalytic water oxidation in aqueous solution. Angew. Chem., Int. Ed., 2018, 57, 7850-7854. https://doi.org/10.1002/anie.201803944

    Article  CAS  Google Scholar 

  6. K. V. N. Esguerra and J.-P. Lumb. Selectivity in the aerobic dearomatization of phenols: total synthesis of dehydronornuciferine by chemo- and regioselective oxidation. Angew. Chem., Int. Ed., 2018, 57, 1514-1518. https://doi.org/10.1002/anie.201710271

    Article  CAS  Google Scholar 

  7. O. V. Nesterova, A. J. L. Pombeiro, and D. S. Nesterov. Tetranuclear copper complexes with bulky aminoalcohol ligands as catalysts for oxidative phenoxazinone synthase-like coupling of aminophenol: A combined experimental and theoretical study. Catalysts, 2022, 12, 1408. https://doi.org/10.3390/catal12111408

    Article  CAS  Google Scholar 

  8. M. Henrion, Y. Mohr, K. Janssens, S. Smolders, A. L. Bugaev, O. A. Usoltsev, E. A. Quadrelli, F. M. Wisser, D. E. De Vos, and J. Canivet. Reusable copper catechol-based porous polymers for the highly efficient heterogeneous catalytic oxidation of secondary alcohols. ChemCatChem, 2022, 14, e2022006. https://doi.org/10.1002/cctc.202200649

    Article  Google Scholar 

  9. S. Sagar, S. Sengupta, A. J. Mota, S. K. Chattopadhyay, A. E. Ferao, E. Riviere, W. Lewis, and S. Naskar. Cubane-like tetranuclear Cu(II) complexes bearing a Cu4O4 core: Crystal structure, magnetic properties, DFT calculations and phenoxazinone synthase like activity. Dalton Trans., 2017, 46, 1249-1259. https://doi.org/10.1039/C6DT03754B

    Article  CAS  PubMed  Google Scholar 

  10. C. Mukherjee, T. Weyhermüller, E. Bothe, E. Rentschler, and P. Chaudhuri. A tetracopper(II)-tetraradical cuboidal core and its reactivity as a functional model of phenoxazinone synthase. Inorg. Chem., 2007, 46, 9895-9905. https://doi.org/10.1021/ic7012599

    Article  CAS  PubMed  Google Scholar 

  11. R. Sanyal, S. Ketkov, S. Purkait, F. A. Mautner, G. Zhigulin, and D. Das. Nuclearity dependent solvent contribution to the catechol oxidase activity of novel copper(II) complexes derived from Mannich-base ligand platforms: Synthesis, crystal structure and mechanism. New J. Chem., 2017, 41, 8586-8597. https://doi.org/10.1039/C7NJ00425G

    Article  CAS  Google Scholar 

  12. W. Kaim. The chemistry and biochemistry of the copper–radical interaction. Dalton Trans., 2003, 5, 761-768. https://doi.org/10.1039/B210193A

    Article  Google Scholar 

  13. P. Verma, J. Weir, L. Mirica, and T. D. P. Stack. Tale of a twist: Magnetic and optical switching in copper(II) semiquinone complexes. Inorg. Chem., 2011, 50, 9816-9825. https://doi.org/10.1021/ic200958g

    Article  CAS  PubMed  Google Scholar 

  14. R. A. Davidson, J. Hao, A. L. Rheingold, and J. S. Miller. High spin ground state copper(II) and nickel(II) complexes possessing the 3,5-di-tert-butyl-1,2-semiquinonate radical anion. Polyhedron, 2017, 133, 348-357. https://doi.org/10.1016/j.poly.2017.05.038

    Article  CAS  Google Scholar 

  15. V. I. Ovcharenko, E. V. Gorelik, S. V. Fokin, G. V. Romanenko, V. N. Ikorskii, A. V. Krashilina, V. K. Cherkasov, and G. A. Abakumov. Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II). J. Am. Chem. Soc., 2007, 129, 10512-10521. https://doi.org/10.1021/ja072463b

    Article  CAS  PubMed  Google Scholar 

  16. G. Speier, Z. Tyeklár, P. Tóth, E. Speier, S. Tisza, A. Rockenbauer, A. M. Whalen, N. Alkire, and C. G. Pierpont. Valence tautomerism and metal-mediated catechol oxidation for complexes of copper prepared with 9,10-phenanthrenequinone. Inorg. Chem., 2001, 40, 5653-5659. https://doi.org/10.1021/ic010373g

    Article  CAS  PubMed  Google Scholar 

  17. G. A. Abakumov, V. K. Cherkasov, V. I. Nevodchikov, V. A. Kuropatov, G. T. Yee, and C. G. Pierpont. Magnetic properties and redox isomerism for 4,4′-bis(semiquinone) complexes of copper. Inorg. Chem., 2001, 40, 2434-2436. https://doi.org/10.1021/ic001449w

    Article  CAS  PubMed  Google Scholar 

  18. J. Rall, M. Wanner, M. Albrecht, F. M. Hornung, and W. Kaim. Sensitive valence tautomer equilibrium of paramagnetic complexes [(L)Cun+(Qn)] (n = 1 or 2; Q = quinones) related to amine oxidase enzymes. Chem. Eur. J., 1999, 5, 2802-2809. https://doi.org/10.1002/(sici)1521-3765(19991001)5:10%3c2802::aid-chem2802%3e3.0.co;2-5

    Article  CAS  Google Scholar 

  19. L. M. Berreau, S. Mahapatra, J. A. Halfen, R. P. Houser, J. V. G. Young, and W. B. Tolman. Reactivity of peroxo- and bis(μ-oxo)dicopper complexes with catechols. Angew. Chem., Int. Ed., 1999, 38, 207-210. https://doi.org/10.1002/(sici)1521-3773(19990115)38:1/2%3c207::aid-anie207%3e3.0.co;2-u

    Article  CAS  Google Scholar 

  20. A. A. Karasik, A. V. Krashilina, A. T. Gubaidullin, I. A. Litvinov, V. K. Cherkasov, O. G. Sinyashin, and G. A. Abakumov. Synthesis, structures, and properties of 3,6-di-tert-butyl-o-benzosemiquinone complexes of copper(I) with 1,5-diaza-3,7-diphosphacyclooctanes. Russ. Chem. Bull., 2000, 49, 1782-1788. https://doi.org/10.1007/BF02496354

    Article  CAS  Google Scholar 

  21. G. A. Abakumov, A. V. Krashilina, V. K. Cherkasov, I. L. Eremenko, and S. E. Nefedov. Bis(1,4-di-tert-butyl-1,4-diazabutadiene)copper(I) [(3,6-di-tert-butyl-o-benzosemiquinono)(3,6-di-tert-butyl-catecholato)cuprate(II)]. The molecular structure and intramolecular electron transfer. Russ. Chem. Bull., 2001, 50, 2193-2199. https://doi.org/10.1023/A:1015022006445

    Article  CAS  Google Scholar 

  22. R. M. Buchanan, C. Wilson-Blumenberg, C. Trapp, S. K. Larsen, D. L. Greene, and C. G. Pierpont. Counter ligand dependence of charge distribution in copper-quinone complexes. Structural and magnetic properties of (3,5-di-tert-butylcatecholato)(bipyridine)copper(II). Inorg. Chem., 1986, 25, 3070-3076. https://doi.org/10.1021/ic00237a029

    Article  CAS  Google Scholar 

  23. H. Börzel, P. Comba, and H. Pritzkow. Structural studies on dicopper(II) compounds with catechol oxidase activity. Chem. Commun., 2001, 1, 97/98. https://doi.org/10.1039/B008714I

    Article  Google Scholar 

  24. M. H. Noamane, S. Ferlay, R. Abidi, N. Kyritsakas, and M. W. Hosseini. Formation of binuclear neutral copper(II) complexes based on p-tert-butyl-calix[4]arene and thiacalix[4]arene in 1,3-A conformation bearing four catechols at their lower rim. Inorg. Chim. Acta, 2017, 468, 260-269. https://doi.org/10.1016/j.ica.2017.04.047

    Article  CAS  Google Scholar 

  25. Q. Zhao, Z.-L. Wei, Q.-P. Kang, H. Zhang, and W.-K. Dong. Homo- and heterometallic Cu(II)–M(II) (M = Ca, Sr and Ba) bis(salamo)-based complexes: Syntheses, structures and fluorescent properties. Spectrochim. Acta, Part A, 2018, 203, 472-480. https://doi.org/10.1016/j.saa.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  26. M. M. Olmstead, P. P. Power, G. Speier, and Z. Tyeklár. Synthesis and structure of a tetranuclear copper(II) 3,5-di-tert-butylcatecholate pyridine complex, [Cu(DTBC)Py]4·2CH3CN. Polyhedron, 1988, 7, 609-614. https://doi.org/10.1016/S0277-5387(00)80367-8

    Article  CAS  Google Scholar 

  27. Y. T. Tesema, D. M. Pham, and K. J. Franz. Synthesis and characterization of copper(II) complexes of cysteinyldopa and benzothiazine model ligands related to pheomelanin. Inorg. Chem., 2006, 45, 6102-6104. https://doi.org/10.1021/ic060262n

    Article  CAS  PubMed  Google Scholar 

  28. E. Gojon, J. Gaillard, J. M. Latour, and J. Laugier. Structural and magnetic properties of a novel pentacopper(II) cluster involving a trinucleating catechol ligand. Inorg. Chem., 1987, 26, 2046-2052. https://doi.org/10.1021/ic00260a008

    Article  CAS  Google Scholar 

  29. S. Shit, M. Nandy, G. Rosair, M. Salah El Fallah, J. Ribas, E. Garribba, and S. Mitra. A hexanuclear copper(II) Schiff base complex incorporating rare “bicapped cubane” core: Structural aspects, magnetic properties and EPR study. Polyhedron, 2013, 52, 963-969. https://doi.org/10.1016/j.poly.2012.07.016

    Article  CAS  Google Scholar 

  30. P. Padnya, K. Shibaeva, M. Arsenyev, S. Baryshnikova, O. Terenteva, I. Shiabiev, A. Khannanov, A. Boldyrev, A. Gerasimov, D. Grishaev, Y. Shtyrlin, and I. Stoikov. Catechol-containing schiff bases on thiacalixarene: synthesis, copper(II) recognition, and formation of organic-inorganic copper-based materials. Molecules, 2021, 26, 2334. https://doi.org/10.3390/molecules26082334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Gojon, J.-M. Latour, S. J. Greaves, D. C. Povey, V. Ramdas, and G. W. Smith. Syntheses, and structural, magnetic, and redox properties of multinuclear copper catecholates. Dalton Trans., 1990, 7, 2043-2051. https://doi.org/10.1039/DT9900002043

    Article  Google Scholar 

  32. E. Gojon, S. J. Greaves, J. M. Latour, D. C. Povey, and G. W. Smith. ChemInform abstract: X-ray structural characterization and magnetic properties of a novel tetranuclear copper catecholate. Inorg. Chem., 1987, 26, 1457. https://doi.org/10.1021/ic00256a029

    Article  CAS  Google Scholar 

  33. W.-K. Dong, X.-N. He, H.-B. Yan, Z.-W. Lv, X. Chen, C.-Y. Zhao, and X.-L Tang. Synthesis, structural characterization and solvent effect of copper(II) complexes with a variational multidentate Salen-type ligand with bisoxime groups. Polyhedron, 2009, 28, 1419-1428. https://doi.org/10.1016/j.poly.2009.03.017

    Article  CAS  Google Scholar 

  34. K.-Q. Hu, S.-Q. Wu, G.-Y. An, A.-L. Cui, and H.-Z. Kou. Syntheses, structure, and magnetic properties of heteronuclear Cu(II)4Fe(III)4 cluster and Cu(II)8 bimetallacycles. Dalton Trans., 2013, 42, 1102-1108. https://doi.org/10.1039/C2DT31708G

    Article  CAS  PubMed  Google Scholar 

  35. M. Sutradhar, M. V. Kirillova, M. F. C. Guedes da Silva, C.-M. Liu, and A. J. L. Pombeiro. Tautomeric effect of hydrazone Schiff bases in tetranuclear Cu(II) complexes: magnetism and catalytic activity towards mild hydrocarboxylation of alkanes. Dalton Trans., 2013, 42, 16578-16587. https://doi.org/10.1039/C3DT52453A

    Article  CAS  PubMed  Google Scholar 

  36. W. L. F. Armarego and C. L. L. Chai. Purification Laboratory Chemicals. Amsterdam, Netherlands: Elsevier, Butterworth-Heinemann, 2003.

  37. M. V. Arsenyev, E. V. Baranov, A. Y. Fedorov, S. A. Chesnokov, and G. A. Abakumov. New bis-o-quinone with azine spacer and its cyclization into indazolo[2,1-a]indazole system. Mendeleev Commun., 2015, 25, 312-314. https://doi.org/10.1016/j.mencom.2015.07.029

    Article  CAS  Google Scholar 

  38. V. I. Lodyato, I. L. Yurkova, V. L. Sorokin, O. I. Shadyro, V. I. Dolgopalets, and M. A. Kisel. Synthesis and properties of 11-(3,5-di-tert-butyl-2-hydroxyphenylcarbamoyl)undecanoic acid (VII), a new amphiphilic antioxidant. Bioorg. Med. Chem. Lett., 2003, 13, 1179. https://doi.org/10.1002/chin.200328102

    Article  Google Scholar 

  39. Data Collection, Reduction and Correction Program, CrysAlisPro 1.171.35.19, Software Package. Rigaku OD, 2011.

  40. Bruker, APEX3. Bruker Molecular Analysis Research Tool, v. 2018.7-2. Madison, Wisconsin, USA: Bruker AXS, 2018.

  41. Bruker, SAINT Data Reduction and Correction Program, v. 8.37A. Madison, Wisconsin, USA: Bruker AXS, 2012.

  42. G. M. Sheldrick. SHELXS-97, Program for Crystal Structure Solution. University of Göttingen: Göttingen, 1997.

  43. G. M. Sheldrick. SHELXT, Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  44. G. M. Sheldrick. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison, Wisconsin, USA: Bruker AXS, 2003.

  45. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  46. SCALE3 ABSPACK: Empirical absorption correction, CrysAlisPro 1.171.35.19, Software Package. Rigaku OD, 2011.

  47. G. M. Sheldrick. SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program. Madison, Wisconsin, USA: Bruker AXS, 2016.

  48. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  49. T. V. Astaf′eva, M. V. Arsenyev, R. V. Rumyantcev, G. K. Fukin, V. K. Cherkasov, and A. I. Poddelsky. Imine-based catechols and o-benzoquinones: synthesis, structure, and features of redox behavior. ACS Omega, 2020, 5, 22179-22191. https://doi.org/10.1021/acsomega.0c02277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M. V. Arsenyev, E. V. Baranov, S. A. Chesnokov, V. K. Cherkasov, and G. A. Abakumov. Synthesis and structure of Schiff bases based on 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde. New sterically hindered bis-catecholaldimines. Russ. Chem. Bull., 2013, 62, 2394-2400. https://doi.org/10.1007/s11172-013-0347-z

    Article  CAS  Google Scholar 

  51. I. V. Smolyaninov, D. A. Burmistrova, M. V. Arsenyev, N. R. Almyasheva, E. S. Ivanova, S. A. Smolyaninova, K. P. Pashchenko, A. I. Poddel′sky, and N. T. Berberova. Catechol- and phenol-containing thio-schiff bases: Synthesis, electrochemical properties and biological evaluation. ChemistrySelect, 2021, 6, 10609-10618. https://doi.org/10.1002/slct.202102246

    Article  CAS  Google Scholar 

  52. M. A. Zherebtsov, M. V. Arseniev, N. M. Khamaletdinova, E. V. Baranov, and S. A. Chesnokov. Di-tret-alkilzameshchennye pirokatekhiny s imidazol′nym zamestitelem: sintez, stroenie i svoistva (Di-tert-alkyl-substituted pyrocatechins with an imidazole substituent: synthesis, structure and properties). Izv. Akad. Nauk, Ser. Khim., 2023, (9), 2102-2118. [In Russian]

  53. S. Wu, D. Zhou, F. Geng, J. Dong, L. Su, Y. Zhou, and S.-F. Yin. Metal-free oxidative condensation of catechols, aldehydes and NH4OAc towards benzoxazoles. Adv. Synth. Catal., 2021, 363, 3607-3614. https://doi.org/10.1002/adsc.202100249

    Article  CAS  Google Scholar 

  54. H. Ke, W. Wei, Y. Yang, H. Wu, Y.-Q. Zhang, G. Xie, and S. Chen. A trinuclear zinc coordination cluster exhibitting fluorescence, colorimetric sensitivity, and recycling of silver ion and detection of cupric ion. Inorg. Chem., 2020, 59, 2833-2842. https://doi.org/10.1021/acs.inorgchem.9b03169

    Article  CAS  PubMed  Google Scholar 

  55. I. V. Smolyaninov, V. V. Kuzmin, M. V. Arsenyev, S. A. Smolyaninova, A. I. Poddel′sky, and N. T. Berberova. Electrochemical transformations and anti/prooxidant activity of sterically hindered o-benzoquinones. Russ. Chem. Bull., 2017, 66, 1217-1229. https://doi.org/10.1007/s11172-017-1876-7

    Article  CAS  Google Scholar 

  56. M. P. Shurygina, M. Y. Zakharina, M. A. Baten′kin, A. N. Konev, A. S. Shavyrin, E. A. Chelnokov, N. Y. Shushunova, M. V. Arsenyev, S. A. Chesnokov, and G. A. Abakumov. A blue to red light sensitive photoinitiating systems based on 3,5-di-tert-butyl-o-benzoquinone derivatives for free radical polymerization. Eur. Polym. J., 2020, 127, 109573. https://doi.org/10.1016/j.eurpolymj.2020.109573

    Article  CAS  Google Scholar 

  57. S. S. Batsanov. The atomic radii of the elements. Russ. J. Inorg. Chem., 1991, 36(12), 1694-1706.

  58. P. M. Zorky and Yu. V. Zefirov. New applications of van der Waals radii in chemistry. Russ. Chem. Rev., 1995, 64, 415-428. https://doi.org/10.1070/RC1995v064n05ABEH000157

    Article  Google Scholar 

  59. S. N. Brown. Metrical oxidation states of 2-amidophenoxide and catecholate ligands: structural signatures of metal–ligand π bonding in potentially noninnocent ligands. Inorg. Chem., 2012, 51, 1251-1260. https://doi.org/10.1021/ic202764j

    Article  CAS  PubMed  Google Scholar 

  60. E. Ruiz, A. Rodrı́guez-Fortea, P. Alemany, and S. Alvarez. Density functional study of the exchange coupling in distorted cubane complexes containing the Cu4O4 core. Polyhedron, 2001, 20, 1323-1327. https://doi.org/10.1016/S0277-5387(01)00613-1

    Article  CAS  Google Scholar 

  61. A. W. Addison, T. N. Rao, J. Reedijk, J. van Rijn, and G. C. Verschoor. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen–sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. Dalton Trans., 1984, 7, 1349-1356. https://doi.org/10.1039/DT9840001349

    Article  Google Scholar 

Download references

Funding

The research was carried out at IOMC RAS using the of equipment the Analytical Center of IOMC RAS funded by the grant “Scientific Equipment for the Development of the Material and Technical Infrastructure of Common Use Centers” (unique identifier RF-2296.61321X0017, Agreement No. 075-15-2021-670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Arsenyev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 11, 117710.https://doi.org/10.26902/JSC_id117710

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zherebtsov, M.A., Arsenyev, M.V., Baranov, E.V. et al. Synthesis and Structure of an o-Quinone Based Cuban Copper Complex with a Benzoxazole Substituent. J Struct Chem 64, 2051–2062 (2023). https://doi.org/10.1134/S0022476623110033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623110033

Keywords

Navigation