Skip to main content
Log in

PREPARATION OF NANOALLOYS OF THE Pt–Pd–Cr SYSTEM UNDER THERMAL DECOMPOSITION OF [(Pt(NH3)4)x(Pd(NH3)4)1–x]CrO4 COMPLEX SALTS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The [(Pt(NH3)4)x(Pd(NH3)4)1–x]CrO4 single-phase solid solution (x = 0.5-0.6) is prepared by the cocrystallization of [Pt(NH3)4](NO3)2 and [Pd(NH3)4](NO3)2 aqueous solutions with ammoniac (NH4)2CrO4. The structure and parameters of the tetragonal (I41/amd, Z = 4) unit cell (a = 7.3091(1) Å, c = 15.2720(6) Å) of this compound and the molar fraction of Pt (x = 0.568(7)) are determined using the single-crystal X-ray diffraction method. The unit cell parameters of the studied crystal are additionally refined by an original method (a = 7.3207(9) Å, c = 15.2527(19) Å, V = 817.4(3) Å3) and are further utilized to refine also the molar fraction of Pt using Zen′s law (x = 0.57(1)). A single crystal of [(Pt(NH3)4)0.57(Pd(NH3)4)0.43]CrO4 and two samples of the synthesized product selected from the total mass are thermally decomposed in hydrogen. A study of thermolysis products by XRD, scanning and transmission electron microscopy methods demonstrates the formation of a Pt0.49Pd0.38Cr0.13 nanoalloy included in the Cr2O3 matrix in the form of blocks (~1 µm) and smaller (>2 nm) spherical formations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. D. P. Domonov, S. I. Pechenyuk, A. T. Belyaevskii, and K. V. Yusenko. Formation of nanostructured carbon from [Ni(NH3)6]3[Fe(CN)6]2. Nanomaterials, 2020, 10(2), 389. https://doi.org/10.3390/nano10020389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. P. Domonov, S. I. Pechenyuk, Y. P. Semushina, and G. I. Kadyrova. Solid-state transformations by thermal decomposition of [Co(en)3][Fe(C2O4)3] in an inert atmosphere. Thermochim. Acta, 2020, 687, 178578. https://doi.org/10.1016/j.tca.2020.178578

    Article  CAS  Google Scholar 

  3. A. V. Zadesenets, E. Y. Filatov, P. E. Plyusnin, T. I. Asanova, I. V. Korolkov, I. A. Baidina, E. V. Shlyakhova, I. P. Asanov, and S. V. Korenev. Complex salts of Pd(II) and Pt( II) with Co(II) and Ni(II) aqua-cations as single-source precursors for bimetallic nanoalloys and mixed oxides. New J. Chem., 2018, 42(11), 8843-8850. https://doi.org/10.1039/c8nj00956b

    Article  CAS  Google Scholar 

  4. D. Domonov, S. Pechenyuk, Y. Semushina, and K. Yusenko. Solid-state transformations in inner coordination sphere of [Co(NH3)6][Fe(C2O4)3]·3H2O as a route to access catalytically active Co–Fe materials. Materials, 2019, 12(2), 221. https://doi.org/10.3390/ma12020221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. D. Vasilchenko, P. Topchiyan, S. Berdyugin, E. Filatov, S. Tkachev, I. Baidina, V. Komarov, E. Slavinskaya, A. Stadnichenko, and E. Gerasimov. Tetraalkylammonium salts of platinum nitrato complexes: isolation, structure, and relevance to the preparation of PtOx/CeO2 catalysts for low-temperature CO oxidation. Inorg. Chem., 2019, 58(9), 6075-6087. https://doi.org/10.1021/acs.inorgchem.9b00370

    Article  CAS  PubMed  Google Scholar 

  6. E. Filatov, V. Lagunova, D. Potemkin, N. Kuratieva, A. Zadesenets, P. Plyusnin, A. Gubanov, and S. Korenev. Tetraammineplatinum(II) and tetraamminepalladium(II) chromates as precursors of metal oxide catalysts. Chem. - Eur. J., 2020, 26(19), 4341-4349. https://doi.org/10.1002/chem.201905391

    Article  CAS  Google Scholar 

  7. D. I. Potemkin, E. Y. Filatov, A. V. Zadesenets, V. N. Rogozhnikov, E. Y. Gerasimov, P. V. Snytnikov, S. V. Korenev, and V. A. Sobyanin. Bimetallic Pt–Co/η-Al2O3/FeCrAl wire mesh composite catalyst prepared via double complex salt [Pt(NH3)4][Co(C2O4)2(H2O)2]·2H2O decomposition. Mater. Lett., 2019, 236, 109-111. https://doi.org/10.1016/j.matlet.2018.10.097

    Article  CAS  Google Scholar 

  8. D. Vasilchenko, P. Topchiyan, I. Baidina, I. Korolkov, E. Filatov, V. Zvereva, P. Plyusnin, E. Slavinskaya, and E. Gerasimov. Double complex salts containing [Pt(NO3)6]2- anion and Rh(III) complex cations: Synthesis, structure and utilisation for preparing (Rh–Pt)/CeO2 catalysts. J. Mol. Struct., 2020, 1211, 128108. https://doi.org/10.1016/j.molstruc.2020.128108

    Article  CAS  Google Scholar 

  9. Y. Duan, Z.-Y. Yu, L. Yang, L.-R. Zheng, C.-T. Zhang, X.-T. Yang, F.-Y. Gao, X.-L. Zhang, X. Yu, R. Liu, H.-H. Ding, C. Gu, X.-S. Zheng, L. Shi, J. Jiang, J.-F. Zhu, M.-R. Gao, and S.-H. Yu. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes. Nat. Commun., 2020, 11(1), 4789. https://doi.org/10.1038/s41467-020-18585-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. Lagunova, E. Filatov, P. Plyusnin, G. Kostin, A. Urlukov, D. Potemkin, and S. Korenev. Metal-oxide catalysts for CO TOX and PROX processes in the Pt–Cr/Mo/W systems. Int. J. Hydrogen Energy, 2023, 48(64), 25133-25143. https://doi.org/10.1016/j.ijhydene.2022.09.086

    Article  CAS  Google Scholar 

  11. E. Y. Filatov, Y. P. Semushina, and A. N. Gosteva. Obtaining and catalytic properties investigation of the products of double-complex salts [Cr(ur)6][M(L)6] thermal oxidation (M = Co, Fe; L = CN, 1/2C2O42− ). J. Therm. Anal. Calorim., 2018, 134(1), 355-361. https://doi.org/10.1007/s10973-018-7230-y

    Article  CAS  Google Scholar 

  12. E. Filatov, V. Lagunova, D. Potemkin, and S. Korenev. Composite of Pd or Pt with chromium oxide (III) as catalysts in CO PROX and CO TOX processes. 11th International Conference on Nanomaterials - Research and Application (NANOCON 2019), Brno, Czech Republic, October 16-18, 2019. Ostrava, Czech Republic: TANGER, 2020, 180-185.

  13. P. S. Serebrennikova, V. Y. Komarov, A. S. Sukhikh, S. P. Khranenko, A. V. Zadesenets, S. A. Gromilov, and K. V. Yusenko. [NiEn3](MoO4)0.5(WO4)0.5 co-crystals as single-source precursors for ternary refractory Ni–Mo–W Alloys. Nanomaterials, 2021, 11(12), 3272. https://doi.org/10.3390/nano11123272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. P. S. Serebrennikova and S. A. Gromilov. Study of [Pd(NH3)4](MoO4)x(CrO4)1–x solid solutions and products of their thermolysis. J. Struct. Chem., 2022, 63(11), 1856-1871. https://doi.org/10.1134/s0022476622110166

    Article  CAS  Google Scholar 

  15. V. I. Lagunova, E. Y. Filatov, P. E. Plyusnin, and S. V. Korenev. In situ and ex situ studies of tetrammineplatinum(II) chromate thermolysis. Russ. J. Inorg. Chem., 2020, 65(10), 1566-1570. https://doi.org/10.1134/s0036023620100150

    Article  CAS  Google Scholar 

  16. A. N. Gosteva, P. E. Plyusnin, Y. P. Semushina, S. I. Pechenyuk, E. Y. Filatov, and O. Y. Kyrtova. The thermal behavior of double complex compounds with the cation [Cr(ur)6]3+ in a reducing atmosphere. J. Therm. Anal. Calorim., 2018, 134(1), 253-260. https://doi.org/10.1007/s10973-018-7428-z

    Article  CAS  Google Scholar 

  17. K. V. Yusenko, S. I. Pechenyuk, E. S. Vikulova, Y. P. Semushina, I. A. Baidina, and E. Y. Filatov. Isostructurality and thermal properties in the series of double complex salts [M1(NH3)6][M2(C2O4)3]·3H2O (M1 = Co, Ir, M2 = Fe, Cr). J. Struct. Chem., 2019, 60(7), 1062-1071. https://doi.org/10.1134/s0022476619070060

    Article  CAS  Google Scholar 

  18. G. A. Kostin, P. E. Plyusnin, E. Y. Filatov, N. V. Kuratieva, A. A. Vedyagin, and D. B. Kal′nyi. Double complex salts [PdL4][RuNO(NO2)4OH] (L = NH3, Py) synthesis, structure and preparation of bimetallic metastable solid solution Pd0.5Ru0.5. Polyhedron, 2019, 159, 217-225. https://doi.org/10.1016/j.poly.2018.11.065

    Article  CAS  Google Scholar 

  19. K. V. Yusenko, S. Khandarkhaeva, M. Bykov, T. Fedotenko, M. Hanfland, A. Sukhikh, S. A. Gromilov, and L. S. Dubrovinsky. Face-centered cubic refractory alloys prepared from single-source precursors. Materials, 2020, 13(6), 1418. https://doi.org/10.3390/ma13061418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Laligant. On the first palladium chromate: crystal structure of Pd(NH3)4(CrO4). Eur. J. Solid State Inorg. Chem., 1993, 30(6), 681-688.

  21. P. S. Serebrennikova and S. A. Gromilov. Calibration of the goniometer equatorial circumference and the refinement of unit cell parameters of [Pt(NH3)4]MO4 (M = Cr, Mo, W). J. Struct. Chem., 2022, 63(11), 1820-1830. https://doi.org/10.1134/s0022476622110129

    Article  CAS  Google Scholar 

  22. E. N. Tupikova, I. A. Platonov, and T. N. Lykova. Hydrothermal synthesis of nanosize phases based on non-ferrous and noble metals. AIP Confer. Proc., 2016, 1724(1), 020052. https://doi.org/10.1063/1.4945172

    Book  Google Scholar 

  23. J. E. Van Dam, P. C. M. Gubbens, and G. J. Van den Berg. The magnetic susceptibility of some Pd–Cr and Pt–Cr alloys. Physica, 1973, 70(3), 520-546. https://doi.org/10.1016/0031-8914(73)90361-3

    Article  CAS  Google Scholar 

  24. C.-Y. Hu, Y.-F. Chiu, C.-C. Tsai, C.-C. Huang, K.-H. Chen, C.-W. Peng, C.-M. Lee, M.-Y. Song, Y.-L. Huang, S.-J. Lin, and C.-F. Pai. Toward 100% spin–orbit torque efficiency with high spin–orbital hall conductivity Pt–Cr alloys. ACS Appl. Electron. Mater., 2022, 4(3), 1099-1108. https://doi.org/10.1021/acsaelm.1c01233

    Article  CAS  Google Scholar 

  25. C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, and K. S. No. Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chem. Phys. Lett., 2000, 327(5/6), 277-283. https://doi.org/10.1016/s0009-2614(00)00877-0

    Article  CAS  Google Scholar 

  26. M. Fernandezgarcia. Behavior of bimetallic Pd–Cr/Al2O3 and Pd–Cr/(Ce,Zr)Ox/Al2O3 catalysts for CO and NO elimination. J. Catal., 2003, 214(2), 220-233. https://doi.org/10.1016/s0021-9517(02)00145-8

    Article  CAS  Google Scholar 

  27. M. Min and H. Kim. Performance and stability studies of PtCr/C alloy catalysts for oxygen reduction reaction in low temperature fuel cells. Int. J. Hydrogen Energy, 2016, 41(39), 17557-17566. https://doi.org/10.1016/j.ijhydene.2016.07.175

    Article  CAS  Google Scholar 

  28. D. Kaewsai, S. Yeamdee, S. Supajaroon, and M. Hunsom. ORR activity and stability of PtCr/C catalysts in a low temperature/pressure PEM fuel cell: Effect of heat treatment temperature. Int. J. Hydrogen Energy, 2018, 43(10), 5133-5144. https://doi.org/10.1016/j.ijhydene.2018.01.101

    Article  CAS  Google Scholar 

  29. A. M. Mebed, E. F. A. Zeid, and A. M. Abd-Elnaiem. Synthesis and thermal treatment of Pd–Cr@carbon for efficient oxygen reduction reaction in proton-exchange membrane fuel cells. J. Inorg. Organomet. Polym. Mater., 2021, 31(9), 3772-3779. https://doi.org/10.1007/s10904-021-01991-6

    Article  CAS  Google Scholar 

  30. K. Peng, N. Bhuvanendran, S. Ravichandran, W. Zhang, Q. Ma, L. Xing, Q. Xu, L. Khotseng, and H. Su. Carbon supported PtPdCr ternary alloy nanoparticles with enhanced electrocatalytic activity and durability for methanol oxidation reaction. Int. J. Hydrogen Energy, 2020, 45(43), 22752-22760. https://doi.org/10.1016/j.ijhydene.2020.06.101

    Article  CAS  Google Scholar 

  31. J.-C. Zhao, M. R. Jackson, L. A. Peluso, and L. N. Brewer. A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM, 2002, 54(7), 42-45. https://doi.org/10.1007/bf02700985

    Article  CAS  Google Scholar 

  32. A. V. Alexeev and S. A. Gromilov. X-Ray Diffraction study of micro amounts of polycrystalline samples. J. Struct. Chem., 2010, 51(4), 744-757. https://doi.org/10.1007/s10947-010-0110-3

    Article  CAS  Google Scholar 

  33. C. Prescher and V. B. Prakapenka. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res., 2015, 35(3), 223-230. https://doi.org/10.1080/08957959.2015.1059835

    Article  CAS  Google Scholar 

  34. B. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr., 2013, 46(2), 544-549. https://doi.org/10.1107/s0021889813003531

    Article  CAS  Google Scholar 

  35. APEX3 V.2019.1-0, SAINT V.8.40A and SADABS-V.2016/2. Madison, Wisconsin, USA: Bruker Advanced X-ray Solutions, 2016-2019.

  36. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  Google Scholar 

  37. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  38. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  39. V. I. Lysoivan. Izmerenie parametrov elementarnoi yacheyki na odnokristal′nom spektrometre (Measurement of Unit Cell Parameters on a Single-Crystal Spectrometer). Novosibirsk, Russia: Nauka, 1982. [In Russian]

  40. OriginPro. Version 2022b. Northampton, MA, USA: OriginLab Corporation, 2022.

  41. K. V. Yusenko, S. Riva, P. A. Carvalho, M. V. Yusenko, S. Arnaboldi, A. S. Sukhikh, M. Hanfland, and S. A. Gromilov. First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater., 2017, 138, 22-27. https://doi.org/10.1016/j.scriptamat.2017.05.022

    Article  CAS  Google Scholar 

  42. K. V. Yusenko, S. A. Martynova, S. Khandarkhaeva, T. Fedotenko, K. Glazyrin, E. Koemets, M. Bykov, M. Hanfland, K. Siemensmeyer, A. Smekhova, S. A. Gromilov, and L. S. Dubrovinsky. High compressibility of synthetic analogous of binary iridium–ruthenium and ternary iridium–osmium–ruthenium minerals. Materialia, 2020, 14, 100920. https://doi.org/10.1016/j.mtla.2020.100920

    Article  CAS  Google Scholar 

  43. Inorganic Crystal Structure Database. D–1754. Eggenstein–Leopoldshafen, Germany: FIZ Karlsruhe, https://icsd.fiz-karlsruhe.de.

  44. Powder Diffraction File. PDF-2. Newtown, USA: International Centre for Diffraction Data, 2021, https://www.icdd.com.

Download references

Funding

The synthesis of the samples was funded by the Russian Science Foundation (project No. 22-23-00672, https://rscf. ru/project/22-23-00672/). The authors thank the Ministry of Science and Higher Education of the Russian Federation and the Priority 2030 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Serebrennikova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 116969.https://doi.org/10.26902/JSC_id116969

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serebrennikova, P.S., Lagunova, V.I., Zadesenets, A.V. et al. PREPARATION OF NANOALLOYS OF THE Pt–Pd–Cr SYSTEM UNDER THERMAL DECOMPOSITION OF [(Pt(NH3)4)x(Pd(NH3)4)1–x]CrO4 COMPLEX SALTS. J Struct Chem 64, 1686–1701 (2023). https://doi.org/10.1134/S0022476623090123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623090123

Keywords

Navigation