Skip to main content
Log in

FEATURES OF DICYANAMIDE BINDING TO A POLYNUCLEAR METALLAMACROCYCLIC COPPER COMPLEX

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The crystal structure of a polynuclear metallamacrocyclic β-alanine hydroxymate complex of copper with dicyanamide (DCA) Cu5(β-alaha)4(DCA)2(H2O)2·H2O (I) is determined by SC-XRD. Due to intermolecular O–H…N interactions, the neighboring molecules form infinite 1D chains linked together by π…π interactions of two cyano groups. An analysis of the electron density topology in Cu5(β-alaha)4(DCA)2(H2O)2 and the molecular electrostatic potential, performed on the basis of DFT calculations, shows that the coordination of dicyanamide leads to the formation of intramolecular non-covalent interactions of DCA with the copper atoms of the metallacrown and the water molecule coordinated on Cu3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. G. Mezei, C. M. Zaleski, and V. L. Pecoraro. Structural and functional evolution of metallacrowns. Chem. Rev., 2007, 107, 4933-5003. https://doi.org/10.1021/cr078200h

    Article  CAS  PubMed  Google Scholar 

  2. M. Tegoni and M. Remelli. Metallacrowns of copper(II) and aminohydroxamates: Thermodynamics of self assembly and host–guest equilibria. Coord. Chem. Rev., 2012, 256, 289-315. https://doi.org/10.1016/j.ccr.2011.06.007

    Article  CAS  Google Scholar 

  3. M. Ostrowska, I. O. Fritsky, E. Gumienna-Kontecka, and A. V. Pavlishchuk. Metallacrown-based compounds: Applications in catalysis, luminescence, molecular magnetism, and adsorption. Coord. Chem. Rev., 2016, 327/328, 304-332. https://doi.org/10.1016/j.ccr.2016.04.017

    Article  CAS  Google Scholar 

  4. Y. Pavlyukh, E. Rentschler, H. J. Elmers, W. Hubner, and G. Lefkidis. Magnetism of metallacrown single-molecule magnets: From a simplest model to realistic systems. Phys. Rev. B, 2018, 97, 214408. https://doi.org/10.1103/PhysRevB.97.214408

    Article  CAS  Google Scholar 

  5. M. A. Katkova. Water-soluble polynuclear metallamacrocyclic copper(II) and lanthanide(III) complexes based on amino hydroxamic acids. Russ. J. Coord. Chem., 2018, 44, 284-300. https://doi.org/10.1134/S107032841804005X

    Article  CAS  Google Scholar 

  6. B. L. Schneider and V. L. Pecoraro. Host–guest chemistry of metallacrowns. In: Advances in Metallacrown Chemistry / Ed. C. M. Zaleski. Cham, Switzerland: Springer, 2022, 1-36. https://doi.org/10.1007/978-3-031-08576-5_1

    Chapter  Google Scholar 

  7. S. R. Batten and K. S. Murray. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coord. Chem. Rev., 2003, 246, 103-130. https://doi.org/10.1016/S0010-8545(03)00119-X

    Article  CAS  Google Scholar 

  8. L. Merabet, A. V. Vologzhanina, Z. Setifi, L. Kabouba, and F. Setifi. Topological motifs in dicyanamides of transition metals. CrystEngComm, 2022, 24, 4740-4747. https://doi.org/10.1039/D2CE00485B

    Article  CAS  Google Scholar 

  9. G. V. Romanenko, E. Yu. Fursova, G. A. Letyagin, A. S. Bogomyakov, M. V. Petrova, V. A. Morozov, and V. I. Ovcharenko. Crystal structure of metal complexes with 2-imidazoline nitroxides and dicyanamide. J. Struct. Chem., 2018, 59, 1412-1420. https://doi.org/10.1134/S0022476618060239

    Article  CAS  Google Scholar 

  10. J. Legendziewicz, M. Puchalska, Z. Ciunik, and W. Wojciechowski. The new decanuclear copper(II) cluster [Cu5(β-alaha)4Cl2]2·2HCl·15H2O, its structure, spectroscopy and magnetism. Polyhedron, 2007, 26, 1331-1337. https://doi.org/10.1016/j.poly.2006.11.002

    Article  CAS  Google Scholar 

  11. A. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, O. V. Shvets, I. O. Fritsky, S. E. Lofland, A. W. Addison, and A. D. Hunter. Magnetic and sorption properties of supramolecular systems based on pentanuclear copper(II) 12-metallacrown-4 complexes and isomeric phthalates: Structural modeling of the different stages of alcohol sorption. Eur. J. Inorg. Chem., 2011, 2011, 4826-4836. https://doi.org/10.1002/ejic.201100790

    Article  CAS  Google Scholar 

  12. SAINT: Data reduction and correction program. Madison, WI, USA: Bruker AXS, 2014.

  13. L. Krause, R. Herbst-Irmer, G. M. Sheldrick, and D. Stalke. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Crystallogr., 2015, 48, 3-10. https://doi.org/10.1107/S1600576714022985

    Article  CAS  Google Scholar 

  14. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8. https://doi.org/10.1107/S2053273314026370

    Article  Google Scholar 

  15. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision D.01. Wallingford, CT, USA: Gaussian, 2013.

  17. A. D. Becke. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  18. C. Lee, W. Yang, and R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev., 1988, 37, 785-789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  19. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98, 11623-11627. https://doi.org/10.1021/j100096a001

    Article  CAS  Google Scholar 

  20. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus. New basis set exchange: An open, up-to-date resource for the molecular sciences community. J. Chem. Inf. Model., 2019, 59, 4814-4820. https://doi.org/10.1021/acs.jcim.9b00725

    Article  CAS  PubMed  Google Scholar 

  21. G. G. Camiletti, S. F. Machado, and F. E. Jorge. Gaussian basis set of double zeta quality for atoms K through Kr: Application in DFT calculations of molecular properties. J. Comput. Chem., 2008, 29, 2434-2444. https://doi.org/10.1002/jcc.20996

    Article  CAS  PubMed  Google Scholar 

  22. A. Canal Neto, E. P. Muniz, R. Centoducatte, and F. E. Jorge. Gaussian basis sets for correlated wave functions. Hydrogen, helium, first- and second-row atoms. J. Mol. Struc.: THEOCHEM, 2005, 718, 219-224. https://doi.org/10.1016/j.theochem.2004.11.037

    Article  CAS  Google Scholar 

  23. J. Tomasi, B. Mennucci, and R. Cammi. Quantum mechanical continuum solvation models. Chem. Rev., 2005, 105, 2999-3094. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  24. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Oxford: Oxford Univ., 1990.

  25. F. Cortes-Guzman and R. F. W. Bader. Complementarity of QTAIM and MO theory in the study of bonding in donor–acceptor complexes. Coord. Chem. Rev., 2005, 249, 633-662. https://doi.org/10.1016/j.ccr.2004.08.022

    Article  CAS  Google Scholar 

  26. T. A. Keith. AIMAll (Version 17.11.14). Overland Park, KS, USA: TK Gristmill Software, 2017, http://aim.tkgristmill.com/

  27. T. Lu and F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  28. I. A. Guzei and M. Wendt. An improved method for the computation of ligand steric effects based on solid angles. Dalton Trans., 2006, 3991-3999. https://doi.org/10.1039/B605102B

    Article  PubMed  Google Scholar 

  29. L. Yang, D. R. Powell, and R. P. Houser. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans., 2007, 955-964. https://doi.org/10.1039/B617136B

    Article  PubMed  Google Scholar 

  30. J. A. Halfen, J. J. Bodwin, and V. L. Pecoraro. Preparation and characterization of chiral copper 12-metallacrown-4 complexes, inorganic analogues of tetraphenylporphyrinatocopper(II). Inorg. Chem., 1998, 37, 5416/5417. https://doi.org/10.1021/ic9807386

    Article  CAS  PubMed  Google Scholar 

  31. C. McDonald, T. Whyte, S. M. Taylor, S. Sanz, E. K. Brechin, D. Gaynor, and L. F. Jones. Progressive decoration of pentanuclear Cu(II) 12-metallacrown-4 nodes towards targeted 1- and 2D extended networks. CrystEngComm, 2013, 15, 6672-6681. https://doi.org/10.1039/C3CE40859K

    Article  CAS  Google Scholar 

  32. I. J. Bruno, J. C. Cole, P. R. Edgington, M. Kessler, C. F. Macrae, P. McCabe, J. Pearson, and R. Taylor. New software for searching the Cambridge Structural Database and visualizing crystal structures. Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 389-397. https://doi.org/10.1107/S0108768102003324

    Article  Google Scholar 

  33. S. S. Batsanov. Van der Waals radii of elements. Inorg. Mater., 2001, 37, 871-885. https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  34. Yu. V. Zefirov and P. M. Zorky. New applications of van der Waals radii in chemistry. Russ. Chem. Rev., 1995, 64, 415-428. https://doi.org/10.1070/RC1995v064n05ABEH000157

    Article  Google Scholar 

  35. P. A. Wood, S. J. Borwick, D. J. Watkin, W. D. S. Motherwell, and F. H. Allen. Dipolar C≡N…C≡N interactions in organic crystal structures: database analysis and calculation of interaction energies. Acta Crystallogr., Sect. B: Struct. Sci., 2008, 64, 393-396. https://doi.org/10.1107/S0108768108010239

    Article  CAS  Google Scholar 

  36. E. Espinosa, E. Molins, and C. Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett., 1998, 285, 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 23-13-00139, https://rscf.ru/project/23-13-00139/).

The SC-XRD studies were performed using equipment of the Analytical Center of IOMC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Rumyantsev.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 9, 115665.https://doi.org/10.26902/JSC_id115665

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumyantsev, R.V., Katkova, M.A., Zabrodina, G.S. et al. FEATURES OF DICYANAMIDE BINDING TO A POLYNUCLEAR METALLAMACROCYCLIC COPPER COMPLEX. J Struct Chem 64, 1635–1643 (2023). https://doi.org/10.1134/S002247662309007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662309007X

Keywords

Navigation