Skip to main content
Log in

Electron Transport Through Octahedral Molybdenum Chalcogenide Clusters in Electrode–Cluster–Electrode Systems

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Electron transport through molybdenum chalcogenide cluster molecules Mo6Q8 (Q = S, Se, and Te) located between two 1D monoatomic aluminum chains is studied using non-equilibrium Green’s function. Electron transport depends on the cluster orientation relative to electrodes, the type of chalcogen atoms, and chemical the bonding between terminal aluminum and chalcogen atoms. Distances characterized by the maximum transport properties are determined from the scan of gaps between terminal atoms of the electrode and the molecule. Conductances of Mo6Se8 and Mo6Te8 clusters are shown to be comparable at the Fermi level, and in some cases, can surpass the conductance of the Mo6S8 cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. J. Moreland and J. W. Ekin. Electron tunneling experiments using Nb–Sn «break» junctions. J. Appl. Phys., 1985, 58(10), 3888-3895. https://doi.org/10.1063/1.335608

    Article  CAS  Google Scholar 

  2. C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh. Experimental observation of the transition from weak link to tunnel junction. Phys. C, 1992, 191(3/4), 485-504. https://doi.org/10.1016/0921-4534(92)90947-b

    Article  Google Scholar 

  3. D. Xiang, H. Jeong, T. Lee, and D. Mayer. Mechanically controllable break junctions for molecular electronics. Adv. Mater., 2013, 25(35), 4845-4867. https://doi.org/10.1002/adma.201301589

    Article  CAS  PubMed  Google Scholar 

  4. P. Gehring, J. M. Thijssen, and H. S. J. van der Zant. Single-molecule quantum-transport phenomena in break junctions. Nat. Rev. Phys., 2019, 1(6), 381-396. https://doi.org/10.1038/s42254-019-0055-1

    Article  Google Scholar 

  5. R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J. M. van Ruitenbeek. Measurement of the conductance of a hydrogen molecule. Nature, 2002, 419(6910), 906-909. https://doi.org/10.1038/nature01103

    Article  CAS  PubMed  Google Scholar 

  6. M. H. Lee, G. Speyer, and O. F. Sankey. Electron transport through single alkane molecules with different contact geometries on gold. Phys. Status Solidi, 2006, 243(9), 2021-2029. https://doi.org/10.1002/pssb.200666804

    Article  CAS  Google Scholar 

  7. E. M. Dief, P. J. Low, I. Díez-Pérez, and N. Darwish. Advances in single-molecule junctions as tools for chemical and biochemical analysis. Nat. Chem., 2023, 15(5), 600-614. https://doi.org/10.1038/s41557-023-01178-1

    Article  CAS  PubMed  Google Scholar 

  8. J. Shin, J.S. Eo, T. Jeon, T. Lee, and G. Wang. Advances of various heterogeneous structure types in molecular junction systems and their charge transport properties. Adv. Sci., 2022, 9(30), 2202399. https://doi.org/10.1002/advs.202202399

    Article  PubMed  PubMed Central  Google Scholar 

  9. I. Popov, T. Yang, S. Berber, G. Seifert, and D. Tománek. Unique structural and transport properties of molybdenum chalcohalide nanowires. Phys. Rev. Lett., 2007, 99(8), 085503. https://doi.org/10.1103/physrevlett.99.085503

    Article  PubMed  Google Scholar 

  10. I. Popov, S. Gemming, and G. Seifert. Structural and electronic properties of Mo6S8 clusters deposited on a Au(111) surface investigated with density functional theory. Phys. Rev. B, 2007, 75(24), 245436. https://doi.org/10.1103/physrevb.75.245436

    Article  Google Scholar 

  11. M. R. Ryzhikov and S. G. Kozlova. Electron transport through the Mo6S8 molecule in the electrode–cluster–electrode system: effect of the cluster remoteness and orientation relative to the electrodes. J. Struct. Chem., 2022, 63(11), 1745-1750. https://doi.org/10.1134/s0022476622110038

    Article  CAS  Google Scholar 

  12. N. Chevreau and D. C. Johnson. Preparation and physical properties of BiMo6S8 and SbMo6S8. J. Solid State Chem., 1986, 61(3), 347-353. https://doi.org/10.1016/0022-4596(86)90042-3

    Article  CAS  Google Scholar 

  13. P. Gougeon and P.Gall. Direct solid-state synthesis of the superconductor NaMo6Se8: Single-crystal structure, electrical and magnetic properties. Cambridge, England: Cambridge Open Engage, ChemRxiv, 2022. https://doi.org/10.26434/chemrxiv-2022-7zf68

    Article  Google Scholar 

  14. G. J. Miller and M. Smith. Hexamolybdenum octatelluride, Mo6Te8. Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1998, 54(6), 709-710. https://doi.org/10.1107/s0108270197017812

    Article  Google Scholar 

  15. ADF 2022.102. Amsterdam, The Netherlands: SCM, Theoretical Chemistry, Vrije Universiteit, 2022, https://www.scm.com (accessed Jan 10, 2023).

  16. A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6). 3098-3100. https://doi.org/10.1103/physreva.38.3098

    Article  CAS  Google Scholar 

  17. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18), 3865-3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  PubMed  Google Scholar 

  18. E. Van Lenthe and E. J. Baerends. Optimized Slater-type basis sets for the elements 1-118. J. Comput. Chem., 2003, 24(9), 1142-1156. https://doi.org/10.1002/jcc.10255

    Article  CAS  PubMed  Google Scholar 

  19. E. van Lenthe, A. Ehlers, and E.-J. Baerends. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys., 1999, 110(18), 8943-8953. https://doi.org/10.1063/1.478813

    Article  CAS  Google Scholar 

  20. S. Datta. Quantum Transport: Atom to Transistor. New York, USA: Cambridge University Press, 2005.

  21. C. J. O. Verzijl and J. M. Thijssen. DFT-based molecular transport implementation in ADF/BAND. J. Phys. Chem. C, 2012, 116(46), 24393-24412. https://doi.org/10.1021/jp3044225

    Article  CAS  Google Scholar 

  22. R. Li, J. Zhang, S. Hou, Z. Qian, Z. Shen, X. Zhao, and Z. Xue. A corrected NEGF+DFT approach for calculating electronic transport through molecular devices: Filling bound states and patching the non-equilibrium integration. Chem. Phys., 2007, 336(2/3), 127-135. https://doi.org/10.1016/j.chemphys.2007.06.011

    Article  CAS  Google Scholar 

  23. BAND 2022.102. Amsterdam, The Netherlands: SCM, Theoretical Chemistry, Vrije Universiteit, 2022, https://www.scm.com (accessed Jan 10, 2023).

  24. C. J. Lambert. Basic concepts of quantum interference and electron transport in single-molecule electronics. Chem. Soc. Rev., 2015, 44(4), 875-888. https://doi.org/10.1039/c4cs00203b

    Article  CAS  PubMed  Google Scholar 

  25. M. Strange, I. S. Kristensen, K. S. Thygesen, and K. W. Jacobsen. Benchmark density functional theory calculations for nanoscale conductance. J. Chem. Phys., 2008, 128(11), 114714. https://doi.org/10.1063/1.2839275

    Article  PubMed  Google Scholar 

  26. R. F. W. Bader. Atoms in Molecules. A Quantum Theory. New York: Clarendon, 1990.

  27. E. Espinosa, I. Alkorta, J. Elguero, and E. Molins. From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems. J. Chem. Phys., 2002, 117(12), 5529-5542. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  28. CRC Handbook of Chemistry and Physics, 95th ed. / Eds. W.M. Haynes, D.R. Lide, T.J. Bruno. Boca Raton, FL, USA: CRC Press, 2014-2015.

  29. D. O. Arentov, M. R. Ryzhikov, and S. G. Kozlova. The role of quadruple bonding in the electron transport through a dimolybdenum tetraacetate molecule. Molecules, 2022, 27(20), 6912. https://doi.org/10.3390/molecules27206912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 22-23-00245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kozlova.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114895.https://doi.org/10.26902/JSC_id114895

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryzhikov, M.R., Kozlova, S.G. Electron Transport Through Octahedral Molybdenum Chalcogenide Clusters in Electrode–Cluster–Electrode Systems. J Struct Chem 64, 1525–1531 (2023). https://doi.org/10.1134/S0022476623080164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080164

Keywords

Navigation