Skip to main content
Log in

Electronic and Mechanical Properties of Endohedral Composites of Carbon Nanotubes with Potassium Iodide: DFT Study

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Structure, longitudinal elasticity, and electronic properties of endohedral assembled composites of single-walled carbon nanotubes and a one-dimensional crystal KI - KI@CNT - are studied by the density functional theory method. It is established that electronic properties of defect-free composites KI@CNT are predetermined by the electronic properties of the parent nanotube. The introduction of K or I vacancies stimulates the charge transfer between the encapsulate and the nanotube, accompanied by increasing concentration of electron or hole charge carriers in the nanotube. Young′s moduli of KI@CNT are 20-50% lower than those of parent nanotubes, irrespective of their chirality type and presence of atomic vacancies in the KI encapsulate. These results approve the preservation of high strength of carbon nanotubes within their composites with halides and provide a helpful guideline for applications of nanotubes as delivery agents, nanoreactors, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. S. Iijima. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348), 56-58. https://doi.org/10.1038/354056a0

    Article  CAS  Google Scholar 

  2. M. V. Kharlamova. Advances in tailoring the electronic properties of single-walled carbon nanotubes. Prog. Mater. Sci., 2016, 77, 125-211. https://doi.org/10.1016/j.pmatsci.2015.09.001

    Article  CAS  Google Scholar 

  3. G. Pal and S. Kumar. Mechanical Properties of Isolated Carbon Nanotube. In: Carbon Nanotube-Reinforced Polymers. Elsevier, 2018, 173-199. https://doi.org/10.1016/b978-0-323-48221-9.00008-x

    Chapter  Google Scholar 

  4. Y. R. Poudel and W. Li. Synthesis, properties, and applications of carbon nanotubes filled with foreign materials: A review. Mater. Today Phys., 2018, 7, 7-34. https://doi.org/10.1016/j.mtphys.2018.10.002

    Article  Google Scholar 

  5. M. M. Shokrieh and R. Rafiee. A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech. Compos. Mater., 2010, 46(2), 155-172. https://doi.org/10.1007/s11029-010-9135-0

    Article  CAS  Google Scholar 

  6. M. D. Ganji, A. Fereidoon, M. Jahanshahi, and M. G. Ahangari. Investigation of the mechanical properties of multi-walled carbon nanotubes using density functional theory calculations. J. Comput. Theor. Nanosci., 2012, 9(7), 980-985. https://doi.org/10.1166/jctn.2012.2128

    Article  CAS  Google Scholar 

  7. K. Yoneyama, M. Maruyama, Y. Gao, and S. Okada. Mechanical properties of carbon nanotube under uniaxial tensile strain. Jpn. J. Appl. Phys., 2020, 59(SI), SIID02. https://doi.org/10.35848/1347-4065/ab7f5a

    Article  CAS  Google Scholar 

  8. M. Malagù, E. Benvenuti, and A. Simone. One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: A molecular structural mechanics characterization. Eur. J. Mech., A: Solids, 2015, 54, 160-170. https://doi.org/10.1016/j.euromechsol.2015.06.009

    Article  Google Scholar 

  9. D. D. T. K. Kulathunga, K. K. Ang, and J. N. Reddy. Molecular dynamics analysis on buckling of defective carbon nanotubes. J. Phys. Condens. Matter, 2010, 22(34), 345301. https://doi.org/10.1088/0953-8984/22/34/345301

    Article  CAS  PubMed  Google Scholar 

  10. N. A. Sakharova, A. F. G. Pereira, J. M. Antunes, and J. V. Fernandes. Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Composites, Part B, 2016, 89, 155-168. https://doi.org/10.1016/j.compositesb.2015.11.029

    Article  CAS  Google Scholar 

  11. M. Hart, E. R. White, J. Chen, C. M. McGilvery, C. J. Pickard, A. Michaelides, A. Sella, M. S. P. Shaffer, and C. G. Salzmann. Encapsulation and polymerization of white phosphorus inside single-walled carbon nanotubes. Angew. Chem., Int. Ed., 2017, 56(28), 8144-8148. https://doi.org/10.1002/anie.201703585

    Article  CAS  Google Scholar 

  12. D. V. Rybkovskiy, V. O. Koroteev, A. Impellizzeri, A. A. Vorfolomeeva, E. Y. Gerasimov, A. V. Okotrub, A. Chuvilin, L. G. Bulusheva, and C. P. Ewels. “Missing” one-dimensional red-phosphorus chains encapsulated within single-walled carbon nanotubes. ACS Nano, 2022, 16(4), 6002-6012. https://doi.org/10.1021/acsnano.1c11349

    Article  CAS  PubMed  Google Scholar 

  13. D. V. Rybkovskiy, A. Impellizzeri, E. D. Obraztsova, and C. P. Ewels. Polyiodide structures in thin single-walled carbon nanotubes: A large-scale density-functional study. Carbon, 2019, 142, 123-130. https://doi.org/10.1016/j.carbon.2018.10.049

    Article  CAS  Google Scholar 

  14. Y. X. Wang, Z. Y. Pan, B. E. Zhu, Y. Xiao, and S. H. Guo. Au nanowires encapsulated in carbon nanotubes: Structure, melting and mechanical properties. Mater. Sci. Forum, 2011, 688, 277-285. https://doi.org/10.4028/www.scientific.net/msf.688.277

    Article  CAS  Google Scholar 

  15. Y. Liu, H. Jiang, Y. Zhu, X. Yang, and C. Li. Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J. Mater. Chem. A, 2016, 4(5), 1694-1701. https://doi.org/10.1039/c5ta10551j

    Article  CAS  Google Scholar 

  16. L. Wang and G. Q. Kong. Coupling mechanical behavior of chiral carbon nanotubes filled by metal atoms. J. Comput. Theor. Nanosci., 2012, 9(12), 2042-2044. https://doi.org/10.1166/jctn.2012.2612

    Article  CAS  Google Scholar 

  17. M. V. Kharlamova. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes. Appl. Phys. A, 2015, 118(1), 27-35. https://doi.org/10.1007/s00339-014-8880-7

    Article  CAS  Google Scholar 

  18. N. Kuganathan, A. Chroneos. Encapsulation of cadmium telluride nanocrystals within single wall carbon nanotubes. Inorg. Chim. Acta, 2019, 488, 246-254. https://doi.org/10.1016/j.ica.2019.01.027

    Article  CAS  Google Scholar 

  19. S. Sandoval, E. Pach, B. Ballesteros, G. Tobias. Encapsulation of two-dimensional materials inside carbon nanotubes: Towards an enhanced synthesis of single-layered metal halides. Carbon, 2017, 123, 129-134. https://doi.org/10.1016/j.carbon.2017.07.031

    Article  CAS  Google Scholar 

  20. A. Santidrián, M. Kierkowicz, E. Pach, D. Darvasiová, B. Ballesteros, G. Tobias, and M. Kalbáč. Charge transfer in steam purified arc discharge single wall carbon nanotubes filled with lutetium halides. Phys. Chem. Chem. Phys., 2020, 22(18), 10063-10075. https://doi.org/10.1039/d0cp01408g

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Eliseev, N. S. Falaleev, N. I. Verbitskiy, A. A. Volykhov, L. V. Yashina, A. S. Kumskov, V. G. Zhigalina, A. L. Vasiliev, A. V. Lukashin, J. Sloan, and N. A. Kiselev. Size-dependent structure relations between nanotubes and encapsulated nanocrystals. Nano Lett., 2017, 17(2), 805-810. https://doi.org/10.1021/acs.nanolett.6b04031

    Article  CAS  PubMed  Google Scholar 

  22. C. Spinato, A. Perez Ruiz de Garibay, M. Kierkowicz, E. Pach, M. Martincic, R. Klippstein, M. Bourgognon, J. T.-W. Wang, C. Ménard-Moyon, K. T. Al-Jamal, B. Ballesteros, G. Tobias, and A. Bianco. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale, 2016, 8(25), 12626-12638. https://doi.org/10.1039/c5nr07923c

    Article  CAS  PubMed  Google Scholar 

  23. J. T.-W. Wang, C. Spinato, R. Klippstein, P. M. Costa, M. Martincic, E. Pach, A. P. Ruiz de Garibay, C. Ménard-Moyon, R. Feldman, Y. Michel, M. Šefl, I. Kyriakou, D. Emfietzoglou, J.-C. Saccavini, B. Ballesteros, G. Tobias, A. Bianco, and K. T. Al-Jamal. Neutron-irradiated antibody-functionalised carbon nanocapsules for targeted cancer radiotherapy. Carbon, 2020, 162, 410-422. https://doi.org/10.1016/j.carbon.2020.02.060

    Article  CAS  Google Scholar 

  24. G. Tobias, B. Ballesteros, and M. L. H. Green. Carbon nanocapsules: blocking materials inside carbon nanotubes. Phys. Status Solidi C, 2010, 7(11/12), 2739-2742. https://doi.org/10.1002/pssc.200983823

    Article  CAS  Google Scholar 

  25. A. Servant, I. Jacobs, C. Bussy, C. Fabbro, T. da Ros, E. Pach, B. Ballesteros, M. Prato, K. Nicolay, and K. Kostarelos. Gadolinium-functionalised multi-walled carbon nanotubes as a T1 contrast agent for MRI cell labelling and tracking. Carbon, 2016, 97, 126-133. https://doi.org/10.1016/j.carbon.2015.08.051

    Article  CAS  Google Scholar 

  26. C. J. Serpell, R. N. Rutte, K. Geraki, E. Pach, M. Martincic, M. Kierkowicz, S. De Munari, K. Wals, R. Raj, B. Ballesteros, G. Tobias, D. C. Anthony, and B. G. Davis. Carbon nanotubes allow capture of krypton, barium and lead for multichannel biological X-ray fluorescence imaging. Nat. Commun., 2016, 7(1), 13118. https://doi.org/10.1038/ncomms13118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. S. De Munari, S. Sandoval, E. Pach, B. Ballesteros, G. Tobias, D. C. Anthony, and B. G. Davis. In vivo behaviour of glyco-NaI@SWCNT ′nanobottles′. Inorg. Chim. Acta, 2019, 495, 118933. https://doi.org/10.1016/j.ica.2019.05.032

    Article  CAS  Google Scholar 

  28. S. Y. Hong, G. Tobias, K. T. Al-Jamal, B. Ballesteros, H. Ali-Boucetta, S. Lozano-Perez, P. D. Nellist, R. B. Sim, C. Finucane, S. J. Mather, M. L. H. Green, K. Kostarelos, and B. G. Davis. Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat. Mater., 2010, 9(6), 485-490. https://doi.org/10.1038/nmat2766

    Article  CAS  Google Scholar 

  29. M. Kierkowicz, J. M. González-Domínguez, E. Pach, S. Sandoval, B. Ballesteros, T. Da Ros, and G. Tobias. Filling single-walled carbon nanotubes with lutetium chloride: A sustainable production of nanocapsules free of nonencapsulated material. ACS Sustainable Chem. Eng., 2017, 5(3), 2501-2508. https://doi.org/10.1021/acssuschemeng.6b02850

    Article  CAS  Google Scholar 

  30. F. Jin, S. Xiao, L. Lu, and Y. Wang. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett., 2016, 16(1), 440-447. https://doi.org/10.1021/acs.nanolett.5b04105

    Article  CAS  PubMed  Google Scholar 

  31. A. Vasylenko, S. Marks, J. M. Wynn, P. V. C. Medeiros, Q. M. Ramasse, A. J. Morris, J. Sloan, and D. Quigley. Electronic structure control of sub-nanometer 1D SnTe via nanostructuring within single-walled carbon nanotubes. ACS Nano, 2018, 12(6), 6023-6031. https://doi.org/10.1021/acsnano.8b02261

    Article  CAS  PubMed  Google Scholar 

  32. A. Botos, J. Biskupek, T. W. Chamberlain, G. A. Rance, C. T. Stoppiello, J. Sloan, Z. Liu, K. Suenaga, U. Kaiser, and A. N. Khlobystov. Carbon nanotubes as electrically active nanoreactors for multi-step inorganic synthesis: Sequential transformations of molecules to nanoclusters and nanoclusters to nanoribbons. J. Am. Chem. Soc., 2016, 138(26), 8175-8183. https://doi.org/10.1021/jacs.6b03633

    Article  CAS  PubMed  Google Scholar 

  33. A. Vyalikh, A. U. Wolter, S. Hampel, D. Haase, M. Ritschel, A. Leonhardt, H.-J. Grafe, A. Taylor, K. Krämer, B. Büchner, and R. Klingeler. A carbon-wrapped nanoscaled thermometer for temperature control in biological environments. Nanomedicine, 2008, 3(3), 321-327. https://doi.org/10.2217/17435889.3.3.321

    Article  PubMed  Google Scholar 

  34. B. Kumanek, G. Stando, P. Stando, K. Matuszek, K. Z. Milowska, M. Krzywiecki, M. Gryglas-Borysiewicz, Z. Ogorzałek, M. C. Payne, D. MacFarlane, and D. Janas. Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above. Sci. Rep., 2021, 11(1), 8649. https://doi.org/10.1038/s41598-021-88079-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci., 2007, 104(20), 8218-8222. https://doi.org/10.1073/pnas.0700567104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Perez Ruiz de Garibay, C. Spinato, R. Klippstein, M. Bourgognon, M. Martincic, E. Pach, B. Ballesteros, C. Ménard-Moyon, K. T. Al-Jamal, G. Tobias, and A. Bianco. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Sci. Rep., 2017, 7(1), 42605. https://doi.org/10.1038/srep42605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. Martincic, S. Vranic, E. Pach, S. Sandoval, B. Ballesteros, K. Kostarelos, and G. Tobias. Non-cytotoxic carbon nanocapsules synthesized via one-pot filling and end-closing of multi-walled carbon nanotubes. Carbon, 2019, 141, 782-793. https://doi.org/10.1016/j.carbon.2018.10.006

    Article  CAS  Google Scholar 

  38. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter, 2002, 14(11), 2745-2779. https://doi.org/10.1088/0953-8984/14/11/302

    Article  CAS  Google Scholar 

  39. M. V. Kharlamova, C. Kramberger, P. Rudatis, K. Yanagi, and D. Eder. Characterization of the electronic properties of single-walled carbon nanotubes filled with an electron donor–rubidium iodide: Multifrequency Raman and X-ray photoelectron spectroscopy studies. Phys. Status Solidi, 2019, 256(12), 1900209. https://doi.org/10.1002/pssb.201900209

    Article  CAS  Google Scholar 

  40. C. B. Jiang, B. Wu, Z. Q. Zhang, L. Lu, S. X. Li, and S. X. Mao. Lithium fluoride nanowires via vapor-liquid-solid growth. Appl. Phys. Lett., 2006, 88(9), 093103. https://doi.org/10.1063/1.2179617

    Article  CAS  Google Scholar 

  41. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett., 1992, 60(18), 2204-2206. https://doi.org/10.1063/1.107080

    Article  CAS  Google Scholar 

  42. D. B. Sirdeshmukh, L. Sirdeshmukh, and K. G. Subhadra. Alkali Halides: A Handbook of Physical Properties: Springer Series in Materials Science, Vol. 49. Berlin, Heidelberg: Springer, 2001, 25. https://doi.org/10.1007/978-3-662-04341-7

    Book  Google Scholar 

  43. J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu, V. C. Williams, S. Friedrichs, E. Flahaut, R. L. Callender, A. P. E. York, K. S. Coleman, M. L. H. Green, R. E. Dunin-Borkowski, and J. L. Hutchison. Two layer 4:4 co-ordinated KI crystals grown within single wall carbon nanotubes. Chem. Phys. Lett., 2000, 329(1/2), 61-65. https://doi.org/10.1016/s0009-2614(00)00998-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Anuchin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 4, 109492.https://doi.org/10.26902/JSC_id109492

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuchin, N.M., Enyashin, A.N. Electronic and Mechanical Properties of Endohedral Composites of Carbon Nanotubes with Potassium Iodide: DFT Study. J Struct Chem 64, 662–673 (2023). https://doi.org/10.1134/S0022476623040133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623040133

Keywords

Navigation