Skip to main content
Log in

TRIIODIDE SALTS OF 4-DIMETHYLAMINO- AND 3-BROMO-1-METHYLPYRIDINIUM: CRYSTAL STRUCTURES AND FEATURES OF NON-COVALENT I⋯I INTERACTIONS IN SOLIDS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Triiodide salts of pyridinium-derived cations of the composition CatI3 (Cat = 4-dimethylaminopyridinium (1), 3-bromo-1-methylpyridinium (2)) are prepared by reactions of respective cation iodide and I2 in the HI solution and characterized by single crystal XRD and Raman spectroscopy. The optical band gaps are calculated from the diffuse reflectance spectroscopy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. K. Sonnenberg, L. Mann, F. A. Redeker, B. Schmidt, and S. Riedel. Angew. Chem., Int. Ed., 2020, 59, 5464-5493. https://doi.org/10.1002/anie.201903197

    Article  CAS  Google Scholar 

  2. P. H. Svensson and L. Kloo. Chem. Rev., 2003, 103, 1649-1684. https://doi.org/10.1021/cr0204101

    Article  CAS  PubMed  Google Scholar 

  3. P. Voßnacker, T. Keilhack, N. Schwarze, K. Sonnenberg, K. Seppelt, M. Malischewski, and S. Riedel. Eur. J. Inorg. Chem., 2021, 2021, 1034-1040. https://doi.org/10.1002/ejic.202001072

    Article  CAS  Google Scholar 

  4. K. Sonnenberg, P. Pröhm, N. Schwarze, C. Müller, H. Beckers, and S. Riedel. Angew. Chem., Int. Ed., 2018, 57, 9136-9140. https://doi.org/10.1002/anie.201803486

    Article  CAS  Google Scholar 

  5. T. Poręba, M. Świątkowski, and R. Kruszyński. Dalton Trans., 2021, 50, 2800-2806. https://doi.org/10.1039/D0DT04042H

    Article  CAS  PubMed  Google Scholar 

  6. I. A. Mezentsev-Cherkes, T. A. Shestimerova, A. V. Medvedko, M. A. Kalinin, A. N. Kuznetsov, Z. Wei, E. V. Dikarev, S. Z. Vatsadze, and A. V. Shevelkov. CrystEngComm, 2021, 23, 2384-2395. https://doi.org/10.1039/D0CE01730B

    Article  CAS  Google Scholar 

  7. G. J. Reiss. Zeit. Krist. – New Cryst. Struct., 2019, 234, 899-902. https://doi.org/10.1515/ncrs-2019-0127

    Article  CAS  Google Scholar 

  8. G. J. Reiss. Zeit. Krist. – New Cryst. Struct., 2019, 234, 737-739. https://doi.org/10.1515/ncrs-2019-0082

    Article  CAS  Google Scholar 

  9. E. V. Savinkina, D. V. Golubev, and M. S. Grigoriev. J. Coord. Chem., 2019, 72, 347-357. https://doi.org/10.1080/00958972.2018.1555328

    Article  CAS  Google Scholar 

  10. M. E. Burin, G. K. Fukin, and M. N. Bochkarev. Russ. Chem. Bull., 2007, 56, 1736-1741.

  11. I. D. Yushina, V. I. Batalov, E. V. Bartashevich, A. O. Davydov, P. S. Zelenovskiy, and A. E. Masunov. J. Raman Spectrosc., 2017, 48, 1411-1413. https://doi.org/10.1002/jrs.5159

    Article  CAS  Google Scholar 

  12. I. Yushina, N. Tarasova, D. Kim, V. Sharutin, and E. Bartashevich. Crystals, 2019, 9, 506. https://doi.org/10.3390/cryst9100506

    Article  CAS  Google Scholar 

  13. Y. V. Torubaev and I. V. Skabitsky. CrystEngComm, 2020, 22, 6661-6673. https://doi.org/10.1039/D0CE01093F

    Article  CAS  Google Scholar 

  14. O. I. Bolshakov, I. D. Yushina, A. I. Stash, R. R. Aysin, E. V. Bartashevich, and O. A. Rakitin. Struct. Chem., 2020, 31, 1729-1737. https://doi.org/10.1007/s11224-020-01584-y

    Article  CAS  Google Scholar 

  15. G. J. Reiss. Zeit. Krist. – New Cryst. Struct., 2019, 234, 737-739. https://doi.org/10.1515/ncrs-2019-0082

    Article  CAS  Google Scholar 

  16. J. Merkelbach, M. A. Majewski, and G. J. Reiss. Zeit. Krist. – New Cryst. Struct., 2018, 233, 941-944. https://doi.org/10.1515/ncrs-2018-0125

    Article  CAS  Google Scholar 

  17. M. van Megen, G. Reiss. Inorganics, 2013, 1, 3-13. https://doi.org/10.3390/inorganics1010003

    Article  CAS  Google Scholar 

  18. P. Kalle and S. I. Bezzubov. Russ. J. Inorg. Chem., 2021, 66, 1682-1687. https://doi.org/10.1134/S0036023621110103

    Article  CAS  Google Scholar 

  19. T. A. Shestimerova, M. A. Bykov, Z. Wei, E. V. Dikarev, and A. V. Shevelkov. Russ. Chem. Bull., 2019, 68, 1520-1524. https://doi.org/10.1007/s11172-019-2586-0

    Article  CAS  Google Scholar 

  20. L. G. Shagun, I. A. Dorofeev, L. V. Zhilitskaya, N. O. Yarosh, and L. I. Larina. Russ. J. Org. Chem., 2019, 55, 983-987. https://doi.org/10.1134/S107042801907011X

    Article  CAS  Google Scholar 

  21. T. Poręba, M. Ernst, D. Zimmer, P. Macchi, and N. Casati. Angew. Chem., Int. Ed., 2019, 58, 6625-6629. https://doi.org/10.1002/anie.201901178

    Article  CAS  Google Scholar 

  22. T. Poręba, M. Ernst, D. Zimmer, P. Macchi, and N. Casati. Angew. Chem., Int. Ed., 2019, 58, 6625-6629. https://doi.org/10.1002/anie.201901178

    Article  CAS  Google Scholar 

  23. D. G. Kim, E. I. Bakhteeva, and V. V. Sharutin. Russ. J. Gen. Chem., 2020, 90, 2064-2067. https://doi.org/10.1134/S1070363220110080

    Article  CAS  Google Scholar 

  24. A. V. Rybakova, D. G. Kim, E. I. Danilina, O. V. Sazhaeva, M. A. Ezhikova, and M. I. Kodess. Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2020, 63(6), 19-24. https://doi.org/10.6060/ivkkt.20206306.6102

    Article  CAS  Google Scholar 

  25. I. D. Yushina, D. G. Pikhulya, and E. V. Bartashevich. J. Therm. Anal. Calorim., 2020, 139, 1017-1023. https://doi.org/10.1007/s10973-019-08442-y

    Article  CAS  Google Scholar 

  26. D. G. Kim, E. V. Kalita, V. V. Sharutin, V. S. Senchurin, and V. O. Belov. Russ. J. Gen. Chem., 2018, 88, 2498-2503. https://doi.org/10.1134/S1070363218120071

    Article  CAS  Google Scholar 

  27. S. Jeon, Y. Jo, K. J. Kim, Y. Jun, and C. H. Han. ACS Appl. Mater. Interfaces, 2011, 3, 512-516. https://doi.org/10.1021/am101093b

    Article  CAS  PubMed  Google Scholar 

  28. G. M. Weng, Z. Li, G. Cong, Y. Zhou, and Y. C. Lu. Energy Environ. Sci., 2017, 10, 735-741. https://doi.org/10.1039/C6EE03554J

    Article  CAS  Google Scholar 

  29. A. A. Ordinartsev, A. A. Petrov, K. A. Lyssenko, A. V. Petrov, E. A. Goodilin, and A. B. Tarasov. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2021, 77, 692-695. https://doi.org/10.1107/S2056989021005673

    Article  CAS  Google Scholar 

  30. A. A. Petrov, N. A. Belich, A. Y. Grishko, N. M. Stepanov, S. G. Dorofeev, E. G. Maksimov, A. V. Shevelkov, S. M. Zakeeruddin, M. Graetzel, A. B. Tarasov, and E. A. Goodilin. Mater. Horizons, 2017, 4, 625-632. https://doi.org/10.1039/C7MH00201G

    Article  CAS  Google Scholar 

  31. A. A. Petrov, S. A. Fateev, Y. V. Zubavichus, P. V. Dorovatovskii, V. N. Khrustalev, I. A. Zvereva, A. V. Petrov, E. A. Goodilin, and A. B. Tarasov. J. Phys. Chem. Lett., 2019, 10, 5776-5780. https://doi.org/10.1021/acs.jpclett.9b02360

    Article  CAS  PubMed  Google Scholar 

  32. N. N. Udalova, A. S. Tutantsev, S. A. Fateev, E. A. Zharenova, N. A. Belich, E. M. Nemygina, A. V. Ryabova, E. A. Goodilin, and A. B. Tarasov. Russ. J. Inorg. Chem., 2021, 66, 153-162. https://doi.org/10.1134/S0036023621020200

    Article  CAS  Google Scholar 

  33. A. Bondi. J. Phys. Chem., 1964, 68, 441-451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  34. M. Mantina, A. C. Chamberlin, R. Valero, C. J. Cramer, and D. G. Truhlar. J. Phys. Chem. A, 2009, 113, 5806-5812. https://doi.org/10.1021/jp8111556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, and G. Terraneo. Chem. Rev., 2016, 116, 2478-2601. https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Kianimehr, K. Akhbari, J. White, and A. Phuruangrat. Inorg. Chem. Commun., 2020, 115, 107864. https://doi.org/10.1016/j.inoche.2020.107864

    Article  CAS  Google Scholar 

  37. M. D. Esrafili, P. Mousavian, and F. Mohammadian-Sabet. Mol. Phys., 2019, 117, 1903-1911. https://doi.org/10.1080/00268976.2018.1559373

    Article  CAS  Google Scholar 

  38. M. D. Esrafili and P. Mousavian. Mol. Phys., 2018, 116, 526-535. https://doi.org/10.1080/00268976.2017.1406166

    Article  CAS  Google Scholar 

  39. M. D. Esrafili and S. Asadollahi. J. Mol. Graph. Model., 2017, 73, 200-207. https://doi.org/10.1016/j.jmgm.2017.01.005

    Article  CAS  PubMed  Google Scholar 

  40. M. D. Esrafili, S. Asadollahi, and Y. Dadban Shahamat. Struct. Chem., 2016, 27, 1439-1447. https://doi.org/10.1007/s11224-016-0763-4

    Article  CAS  Google Scholar 

  41. R. Wang, B. Xiao, W. Li, and Q. Li. Int. J. Quantum Chem., 2021, 121(2), e26429. https://doi.org/10.1002/qua.26429

    Article  Google Scholar 

  42. R. Wang, Q. Li, and S. Scheiner. Appl. Organomet. Chem., 2020, 34(10), e5891. https://doi.org/10.1002/aoc.5891

    Article  Google Scholar 

  43. Y. Dang, W. Wang, L. Meng, Q. Li, and X. Li. Appl. Organomet. Chem., 2018, 32, e4258. https://doi.org/10.1002/aoc.4258

    Article  CAS  Google Scholar 

  44. A. A. Eliseeva, D. M. Ivanov, A. S. Novikov, A. V. Rozhkov, I. V. Kornyakov, A. Y. Dubovtsev, and V. Y. Kukushkin. Dalton Trans., 2020, 49, 356-367. https://doi.org/10.1039/C9DT04221K

    Article  CAS  PubMed  Google Scholar 

  45. T. A. Shestimerova, N. A. Yelavik, A. V. Mironov, A. N. Kuznetsov, M. A. Bykov, A. V. Grigorieva, V. V. Utochnikova, L. S. Lepnev, and A. V. Shevelkov. Inorg. Chem., 2018, 57, 4077-4087. https://doi.org/10.1021/acs.inorgchem.8b00265

    Article  CAS  PubMed  Google Scholar 

  46. Y. V. Torubaev, I. V. Skabitskiy, P. Rusina, A. A. Pasynskii, D. K. Rai, and A. Singh. CrystEngComm, 2018, 20, 2258-2266. https://doi.org/10.1039/C7CE02185B

    Article  CAS  Google Scholar 

  47. I. S. Aliyarova, D. M. Ivanov, N. S. Soldatova, A. S. Novikov, P. S. Postnikov, M. S. Yusubov, and V. Y. Kukushkin. Cryst. Growth Des., 2021, 21, 1136-1147. https://doi.org/10.1021/acs.cgd.0c01463

    Article  CAS  Google Scholar 

  48. N. S. Soldatova, V. V. Suslonov, T. Y. Kissler, D. M. Ivanov, A. S. Novikov, M. S. Yusubov, P. S. Postnikov, and V. Y. Kukushkin. Crystals, 2020, 10(3), 230. https://doi.org/10.3390/cryst10030230

    Article  CAS  Google Scholar 

  49. A. S. Novikov, D. M. Ivanov, Z. M. Bikbaeva, N. A. Bokach, and V. Y. Kukushkin. Cryst. Growth Des., 2018, 18, 7641-7654. https://doi.org/10.1021/acs.cgd.8b01457

    Article  CAS  Google Scholar 

  50. U. Dabranskaya, D. M. Ivanov, A. S. Novikov, Y. V. Matveychuk, N. A. Bokach, and V. Y. Kukushkin. Cryst. Growth Des., 2019, 19, 1364-1376. https://doi.org/10.1021/acs.cgd.8b01757

    Article  CAS  Google Scholar 

  51. L. E. Zelenkov, D. M. Ivanov, M. S. Avdontceva, A. S. Novikov, and N. A. Bokach. Z. Krist. – Cryst. Mater., 2019, 234, 9-17. https://doi.org/10.1515/zkri-2018-2111

    Article  CAS  Google Scholar 

  52. Y. V. Torubaev, I. V. Skabitsky, and K. A. Lyssenko. Mendeleev Commun., 2020, 30, 580-582. https://doi.org/10.1016/j.mencom.2020.09.009

    Article  CAS  Google Scholar 

  53. A. N. Usoltsev, A. S. Novikov, B. A. Kolesov, K. V. Chernova, P. E. Plyusnin, V. P. Fedin, M. N. Sokolov, and S. A. Adonin. J. Mol. Struct., 2020, 1209, 127949. https://doi.org/10.1016/j.molstruc.2020.127949

    Article  CAS  Google Scholar 

  54. G. M. Sheldrick. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8. https://doi.org/10.1107/S2053229614024218

    Article  Google Scholar 

  55. I. Y. Chernyshov, I. V. Ananyev, and E. A. Pidko. ChemPhysChem, 2020, 21, 370-376. https://doi.org/10.1002/cphc.201901083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. V. D. Nguyen, C. A. McCormick, F. A. Vaccaro, K. E. Riley, C. J. Stephenson, J. T. Mague, and L. V. Koplitz. Polyhedron, 2016, 114, 428-434. https://doi.org/10.1016/j.poly.2016.02.032

    Article  CAS  Google Scholar 

  57. I. D. Yushina, B. A. Kolesov, and E. V. Bartashevich. New J. Chem., 2015, 39, 6163-6170. https://doi.org/10.1039/C5NJ00497G

    Article  CAS  Google Scholar 

  58. D. Bhattacharyya, S. Chaudhuri, and A. Pal. Vacuum, 1992, 43, 313-316. https://doi.org/10.1016/0042-207X(92)90163-Q

    Article  CAS  Google Scholar 

  59. T. A. Shestimerova, N. A. Golubev, N. A. Yelavik, M. A. Bykov, A. V. Grigorieva, Z. Wei, E. V. Dikarev, and A. V. Shevelkov. Cryst. Growth Des., 2018, 18, 2572-2578. https://doi.org/10.1021/acs.cgd.8b00179

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the RSF (project No. 18-73-10040) and the Ministry of Science and Higher Education of the Russian Federation (structural characterization of the samples, 121031700313-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Adonin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 6, pp. 850-857.https://doi.org/10.26902/JSC_id95057

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobeinikov, N.A., Usoltsev, A.N., Shentseva, I.A. et al. TRIIODIDE SALTS OF 4-DIMETHYLAMINO- AND 3-BROMO-1-METHYLPYRIDINIUM: CRYSTAL STRUCTURES AND FEATURES OF NON-COVALENT I⋯I INTERACTIONS IN SOLIDS. J Struct Chem 63, 988–995 (2022). https://doi.org/10.1134/S0022476622060178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622060178

Keywords

Navigation