Skip to main content
Log in

APPLICATION OF N-DOPED CARBON NANOTUBES FOR THE PREPARATION OF HIGHLY DISPERSED PdO–CeO2 COMPOSITE CATALYSTS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Pd–CeO2 catalytic composites deposited on the surface of carbon nanomaterials (CNMs) can act as model systems for probing the nature of active sites of catalytic reactions and can be also considered as promising catalysts for low-temperature oxidation reactions. In this work, nitrogen-doped carbon nanotubes (N-CNTs) are used as a support. The Pd–CeO2/N-CNT catalysts are prepared using different methods of synthesis and studied by a complex of physicochemical methods. The activity of the catalysts is tested in the CO oxidation reaction. The nature of solvents and/or precipitants is varied to establish the optimal method of deposition of highly dispersed palladium and CeO2 species on the surface of N-CNTs. It is shown that using NH3 as a precipitant results in the preparation of more active catalysts than the one synthesized using guanidine. The deposition of Ce and Pd precursors from aqueous solutions leads to the formation of highly dispersed PdO particles but does not allow stabilizing ceria particles on the N-CNT surface. The most active Pd–CeO2/N-CNT catalysts containing active components in a highly dispersed state are prepared by using acetone as a solvent. Co-impregnation of the support with Ce and Pd precursors is found to be more effective than the sequential impregnation with the Ce precursor followed by the palladium precursor. Thus prepared Pd–CeO2/N-CNT catalysts are characterized by high activity in the reaction of CO oxidation at low temperatures; the temperature of 50% CO conversion is equal to 80 °C. The obtained results show that carbon nanomaterials can be effectively used to vary the dispersion and degree of interaction between Pd/PdO and CeO2 components determining the catalytic efficiency in the CO oxidation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. D. Ciuparu, M. R. Lyubovsky, E. Altman, L. D. Pfefferle, and A. Datye. Catal. Rev., 2002, 44, 593. https://doi.org/10.1081/CR-120015482

    Article  CAS  Google Scholar 

  2. J. L. Contreras, J. Salmones, J. A. Colín-Luna, L. Nuño, B. Quintana, I. Córdova, B. Zeifert, C. Tapia, and G. A. Fuentes. Int. J. Hydrogen Energy, 2014, 39, 18835. https://doi.org/10.1016/j.ijhydene.2014.08.072

    Article  CAS  Google Scholar 

  3. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero. Chem. Rev., 2016, 116, 5987. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  PubMed  Google Scholar 

  4. S. Colussi, P. Fornasiero, and A. Trovarelli. Chin. J. Catal., 2020, 41, 938. https://doi.org/10.1016/S1872-2067(19)63510-2

    Article  CAS  Google Scholar 

  5. A. S. Ivanova, E. M. Slavinskaya, O. A. Stonkus, R. V. Gulyaev, T. S. Glazneva, A. S. Noskov, and A. I. Boronin. Catal. Sci. Technol., 2016, 6, 3918. https://doi.org/10.1039/C5CY01588J

    Article  CAS  Google Scholar 

  6. M. Shelef and R. W. McCabe. Catal. Today, 2000, 62, 35. https://doi.org/10.1016/S0920-5861(00)00407-7

    Article  CAS  Google Scholar 

  7. J. Wang, H. Chen, Z. Hu, M. Yao, and Y. Li. Catal. Rev., 2015, 57, 79. https://doi.org/10.1080/01614940.2014.977059

    Article  CAS  Google Scholar 

  8. E. J. Peterson, A. T. Delariva, S. Lin, R. S. Johnson, H. Guo, J. T. Miller, J. H. Kwak, C. H. F. Peden, B. Kiefer, L. F. Allard, F. H. Ribeiro, and A. K. Datye. Nat. Commun., 2014, 5, 4885. https://doi.org/10.1038/ncomms5885

    Article  CAS  PubMed  Google Scholar 

  9. M. Zammit, C. Dimaggio, C. Kim, C. Lambert, G. Muntean, C. Peden, J. Parks, and K. Howden. Future Automotive Aftertreatment Solutions: The 150 C Challenge. Workshop Report. Southfield, MI: USCAR HQ, Nov 29-30, 2012.

  10. J. A. Rodriguez, D. C. Grinter, Z. Liu, R. M. Palomino, and S. D. Senanayake. Chem. Soc. Rev., 2017, 46, 1824. https://doi.org/10.1039/c6cs00863a

    Article  CAS  PubMed  Google Scholar 

  11. M. Kurnatowska, L. Kepinski, and W. Mista. Appl. Catal. B, 2012, 117–118, 135. https://doi.org/10.1016/j.apcatb.2011.12.034

    Article  CAS  Google Scholar 

  12. O. A. Stonkus, Y. Kardash, E. M. Slavinskaya, and V. I. Zaikovskii. ChemCatChem, 2019, 11, 1. https://doi.org/10.1002/cctc.201900752

    Article  CAS  Google Scholar 

  13. A. Trovarelli and J. Llorca. ACS Catal., 2017, 7, 4716. https://doi.org/10.1021/acscatal.7b01246

    Article  CAS  Google Scholar 

  14. A. Bruix and K. M. Neyman. Catal. Lett., 2016, 146, 2053. https://doi.org/10.1007/s10562-016-1799-1

    Article  CAS  Google Scholar 

  15. M. Melchionna and P. Fornasiero. Mater. Today, 2014, 17, 349. https://doi.org/10.1016/j.mattod.2014.05.005

    Article  CAS  Google Scholar 

  16. D. Zhang, C. Pan, L. Shi, L. Huang, J. Fang, and H. Fu. Microporous Mesoporous Mater., 2009, 117, 193. https://doi.org/10.1016/j.micromeso.2008.06.022

    Article  CAS  Google Scholar 

  17. X. Lou, J. Chen, M. Wang, J. Gu, P. Wu, D. Sun, and Y. Tang. J. Power Sources, 2015, 287, 203. https://doi.org/10.1016/j.jpowsour.2015.04.046

    Article  CAS  Google Scholar 

  18. A. B. Dongil, L. Pastor-Pérez, N. Escalona, and A. Sepúlveda-Escribano. Carbon, 2016, 101, 296. https://doi.org/10.1016/j.carbon.2016.01.103

    Article  CAS  Google Scholar 

  19. X. Du, D. Jiang, S. Chen, L. Dai, L. Zhou, N. Hao, T. You, H. Mao, and K. Wang. Biosens. Bioelectron., 2017, 89, 681. https://doi.org/10.1016/j.bios.2015.11.054

    Article  CAS  PubMed  Google Scholar 

  20. Z. Hu, G. Zhou, L. Xu, J. Yang, B. Zhang, and X. Xiang. Appl. Surf. Sci., 2019, 471, 852. https://doi.org/10.1016/j.apsusc.2018.12.067

    Article  CAS  Google Scholar 

  21. H. Wang, T. Maiyalagan, and X. Wang. ACS Catal., 2012, 2, 781. https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  22. O. Y. Podyacheva, S. V. Cherepanova, A. I. Romanenko, L. S. Kibis, D. A. Svintsitskiy, A. I. Boronin, O. A. Stonkus, A. N. Suboch, A. V. Puzynin, and Z. R. Ismagilov. Carbon, 2017, 122, 475. https://doi.org/10.1016/j.carbon.2017.06.094

    Article  CAS  Google Scholar 

  23. Z. Jia, F. Huang, J. Diao, J. Zhang, J. Wang, D. S. Su, and H. Liu. Chem. Commun., 2018, 54, 11168. https://doi.org/10.1039/c8cc06259e

    Article  CAS  Google Scholar 

  24. R. Arrigo, M. E. Schuster, Z. Xie, Y. Yi, G. Wowsnick, L. L. Sun, K. E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A. Knop-Gericke, and R. Schlögl. ACS Catal., 2015, 5, 2740. https://doi.org/10.1021/acscatal.5b00094

    Article  CAS  Google Scholar 

  25. E. V. Matus, A. N. Suboch, A. S. Lisitsyn, D. A. Svinsitskiy, E. Modin, A. Chuvilin, Z. R. Ismagilov, and O. Y. Podyacheva. Diam. Relat. Mater., 2019, 98, 107484. https://doi.org/10.1016/j.diamond.2019.107484

    Article  CAS  Google Scholar 

  26. D. A. Bulushev and L. G. Bulusheva. Catal. Rev., in print. https://doi.org/10.1080/01614940.2020.1864860

    Article  Google Scholar 

  27. W. Shi, B. Zhang, Y. Lin, Q. Wang, Q. Zhang, and D. S. Su. ACS Catal., 2016, 6, 7844. https://doi.org/10.1021/acscatal.6b02207

    Article  CAS  Google Scholar 

  28. M. Cargnello, M. Grzelczak, B. Rodrı́guez-González, Z. Syrgiannis, K. Bakhmutsky, V. , L. M. Liz-Marzán, R. J. Gorte, M. Prato, and P. Fornasiero. J. Am. Chem. Soc., 2012, 134, 11760. https://doi.org/10.1021/ja304398b

    Article  CAS  PubMed  Google Scholar 

  29. A. Beltram, M. Melchionna, T. Montini, L. Nasi, R. J. Gorte, M. Prato, and P. Fornasiero. Catal. Today, 2015, 253, 142. https://doi.org/10.1016/j.cattod.2015.03.032

    Article  CAS  Google Scholar 

  30. J. Fu, Q. Yue, H. Guo, C. Ma, Y. Wen, H. Zhang, N. Zhang, Y. Zheng, J. Zheng, and B. H. Chen. ACS Catal., 2018, 8, 4980. https://doi.org/10.1021/acscatal.8b00962

    Article  CAS  Google Scholar 

  31. J. Wu, L. Zeng, D. Cheng, F. Chen, X. Zhan, and J. Gong. Chin. J. Catal., 2016, 37, 83. https://doi.org/10.1016/S1872-2067(15)60913-5

    Article  Google Scholar 

  32. S. P. Khranenko, I. A. Baidina, and S. A. Gromilov. J. Struct. Chem., 2007, 48(6), 1152. https://doi.org/10.1007/s10947-007-0185-7

    Article  CAS  Google Scholar 

  33. J. F. Moulder, W. F. Stickie, P. E. Sobol, and K. D. Bomben. Handbook of X-Ray Photoelectron Spectroscopy. Minnesota, USA: Perkin-Elmer Corporation, 1992.

  34. M. Romeo, K. Bak, J. El Fallah, F. Le Normand, and L. Hilaire. Surf. Interface Anal., 1993, 20, 508. https://doi.org/10.1002/sia.740200604

    Article  CAS  Google Scholar 

  35. E. M. Slavinskaya, O. A. Stonkus, R. V. Gulyaev, A. S. Ivanova, V. I. Zaikovskii, P. A. Kuznetsov, and A. I. Boronin. Appl. Catal. A, 2011, 401, 83. https://doi.org/10.1016/j.apcata.2011.05.001

    Article  CAS  Google Scholar 

  36. E. M. Slavinskaya, A. V. Zadesenets, O. A. Stonkus, A. I. Stadnichenko, A. V. Shchukarev, Y. V. Shubin, S. V. Korenev, and A. I. Boronin. Appl. Catal. B, 2020, 277, 119275. https://doi.org/10.1016/j.apcatb.2020.119275

    Article  CAS  Google Scholar 

  37. A. N. Suboch, S. V. Cherepanova, L. S. Kibis, D. A. Svintsitskiy, O. A. Stonkus, A. I. Boronin, V. V. Chesnokov, A. I. Romanenko, Z. R. Ismagilov, and O. Y. Podyacheva. Fullerenes, Nanotubes Carbon Nanostruct., 2016, 24, 520. https://doi.org/10.1080/1536383X.2016.1198331

    Article  CAS  Google Scholar 

  38. K. Tang, Y. Ren, W. Liu, J. Wei, J. Guo, S. Wang, and Y. Yang. ACS Appl. Mater. Interfaces, 2018, 10, 13614. https://doi.org/10.1021/acsami.8b02557

    Article  CAS  PubMed  Google Scholar 

  39. V. Muravev, G. Spezzati, Y.-Q. Su, A. Parastaev, F.-K. Chiang, A. Longo, C. Escudero, N. Kosinov, and E. J. M. Hensen. Nat. Catal., 2021, 4, 469. https://doi.org/10.1038/s41929-021-00621-1

    Article  CAS  Google Scholar 

  40. K. Tang, D. Zeng, F. Lin, Y. Yang, and L. Wu. CrystEngComm, 2020, 22, 1251. https://doi.org/10.1039/c9ce01916b

    Article  CAS  Google Scholar 

  41. O. Y. Podyacheva, D. A. Bulushev, A. N. Suboch, D. A. Svintsitskiy, A. S. Lisitsyn, E. Modin, A. Chuvilin, E. Y. Gerasimov, V. I. Sobolev, and V. N. Parmon. ChemSusChem, 2018, 11, 3724. https://doi.org/10.1002/cssc.201801679

    Article  CAS  PubMed  Google Scholar 

  42. L. S. Kibis, A. I. Titkov, A. I. Stadnichenko, S. V. Koscheev, and A. I. Boronin. Appl. Surf. Sci., 2009, 255, 9248. https://doi.org/10.1016/j.apsusc.2009.07.011

    Article  CAS  Google Scholar 

  43. M. Brun, A. Berthet, and J. C. Bertolini. J. Electron Spectrosc. Relat. Phenom., 1999, 104, 55. https://doi.org/10.1016/S0368-2048(98)00312-0

    Article  CAS  Google Scholar 

  44. M. G. Mason. Phys. Rev. B, 1983, 27, 748. https://doi.org/10.1103/PhysRevB.27.748

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Russian Science Foundation (project No. 21-13-00094, 20 April 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Boronin.

Ethics declarations

The authors declare that they have no conflicts of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 3, pp. 311-327.https://doi.org/10.26902/JSC_id89211

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibis, L.S., Korobova, A.N., Fedorova, E.A. et al. APPLICATION OF N-DOPED CARBON NANOTUBES FOR THE PREPARATION OF HIGHLY DISPERSED PdO–CeO2 COMPOSITE CATALYSTS. J Struct Chem 63, 407–422 (2022). https://doi.org/10.1134/S0022476622030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476622030076

Keywords

Navigation