Skip to main content
Log in

A NOVEL TETRANUCLEAR NICKEL(II) SALAMO-BASED COMPLEX ADOPTING TWO OPEN CUBIC STRUCTURES: SYNTHESIS, CHRACTERIZATION, DFT CALCULATION, HIRSHFELD ANALYSIS, AND FLUORESCENT PROPERTIES

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A novel tetranuclear Ni(II) complex [Ni4(L)2(N3)4Cl(MeOH)3]·CH3COCH3 is synthesized via a symmetrical salamo-based ligand H2L, NiCl2·6H2O, and NaN3. The structure is characterized by elemental analyses, IR and UV-Vis spectroscopy, and X-ray diffraction analysis. The X-ray crystal analysis shows that Ni(II) atoms in the Ni(II) complex have distorted octahedral geometries. It is the key factor that the ligand containing 3-position methoxy groups gives rise to the formation of the tetranuclear Ni(II) complex. When \(\text{NO}_{3}^{-}\) anions are used to bridge two Ni2 atoms, there are two symmetrical open cubic structures. The Ni(II) complex forms a 3D supramolecular structure through intermolecular hydrogen bond interactions. Using the Hirshfeld surface to clarify interactions between the molecules, the percentages of C–H/H–C, O–H/H–O, and H–H/H–H contacts are calculated as 19.0%, 15.3%, and 54.0%, respectively. Density functional theory (DFT) studies show that the stability of the Ni(II) complex is much higher than that of H2L. The calculation of the fluorescence titration experiment can give K = 1.05·108 M–1, which further proves the stability of the Ni(II) complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

REFERENCES

  1. C. K. Ng, R. W. Toh, T. T. Lin, H. K. Luo, T. S. A. Hor, and J. Wu. Chem Sci., 2019, 10, 1549-1554.

    Article  CAS  PubMed  Google Scholar 

  2. H. Asaba, T. Iwasaki, M. Hatazawa, J. Deng, H. Nagae, K. Mashima, and K. Nozaki. Inorg. Chem., 2020, 59, 7928-7933.

    Article  CAS  PubMed  Google Scholar 

  3. H. Reiss, H. Shalit, V. Vershinin, N. Y. More, H. Forckosh, and D. Pappo. J. Org. Chem., 2019, 84, 7950-7960.

    Article  CAS  PubMed  Google Scholar 

  4. A. Tzubery, N. Melamed-Book, and E. Y. Tshuva. Dalton Trans., 2018, 47, 3669-3673.

    Article  CAS  PubMed  Google Scholar 

  5. S. Mirza, H. Chen, S. M. Chen, Z. G. Gu, and J. Zhang. Cryst. Growth Des., 2018, 18, 7150-7157.

    Article  CAS  Google Scholar 

  6. J. G. Duan, M. Higuchi, J. Zheng, S. I. Noro, I. Y. Chang, K. Hyeon-Deuk, S. Mathew, S. Kusaka, E. Sivaniah, R. Matsuda, S. Sakaki, and S. Kitagawa. J. Am. Chem. Soc., 2017, 139, 11576-11583.

    Article  CAS  PubMed  Google Scholar 

  7. J. G. Duan, Y. Li, Y. Pan, N. Behera, and W. Jin. Coord. Chem. Rev., 2019, 395, 25-45.

    Article  CAS  Google Scholar 

  8. M. Umemura, M. R. Islam, H. Fukumura, I. Sato, Y. Kawabata, K. Matsuo, R. Nakakaji, A. Nagasako, M. Ohtake, F. Takayuki, U. Yokoyama, T. Nakayama, H. Eguchi, and Y. Ishikawa. Cancer Sci., 2019, 110, 356-365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. H. Khan, M. Cai, J. Deng, P. Yu, H. Liang, and F. Yang. Molecules, 2019, 24, 2544.

    Article  CAS  PubMed Central  Google Scholar 

  10. Y. Ning, Y. Huo, H. Xue, Y. Du, Y. Yao, A. C. Sedgwick, H. Lin, C. Li, S. D. Jiang, B. W. Wang, S. Gao, L. Kang, J. L. Sessler, and J. L. Zhang. J. Am. Chem. Soc., 2020, 142, 10219-10227.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Yao, H. Y. Yin, Y. Ning, J. Wang, Y. S. Meng, X. Huang, W. Zhang, L. Kang, and J. L. Zhang. Inorg. Chem., 2019, 58, 1806-1814.

    Article  CAS  PubMed  Google Scholar 

  12. S. W. Kwak, H. Jin, J. H. Lee, H. Hwang, M. Kim, Y. Kim, Y. Chung, K. M. Lee, and M. H. Park. Inorg. Chem., 2019, 58, 2454-2462.

    Article  CAS  PubMed  Google Scholar 

  13. A. Mohammadi, B. Khalili, and A. S. Haghayegh. Spectrochim. Acta, Part A, 2019, 222, 117193.

    Article  CAS  Google Scholar 

  14. K. Kang, J. Fuller, A. H. Reath, J. W. Ziller, A. N. Alexandrova, and J. Y. Yang. Chem. Sci., 2019, 10, 10135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. Nisbett, Y. J. Tu, C. Turro, J. J. Kodanko, and H. B. Schlegel. Inorg. Chem., 2018, 57, 231-240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Wang, Y. Q. Pan, J. F. Wang, Y. Zhang, and Y. J. Ding. J. Photochem. Photobiol. A, 2020, 400, 112719.

    Article  CAS  Google Scholar 

  17. X. X. An, Z. Z. Chen, H. R. Mu, and L. Zhao. Inorg. Chim. Acta, 2020, 511, 119823.

    Article  CAS  Google Scholar 

  18. R. N. Bian, J. F. Wang, Y. J. Li, Y. Zhang, and W. K. Dong. J. Photochem. Photobiol. A, 2020, 400, 112829.

  19. X. Xu, R. N. Bian, S. Z. Guo, W. K. Dong, and Y. J. Ding. Inorg. Chim. Acta, 2020, 513, 119945.

    Article  CAS  Google Scholar 

  20. Y. D. Peng, Y. Zhang, Y. L. Jiang, Z. L. Ren, F. Wang, and L. Wang. J. Fluoresc., 2020, 30, 1049-1061.

    Article  CAS  PubMed  Google Scholar 

  21. H. R. Mu, M. Yu, L. Wang, Y. Zhang, and Y. J. Ding. Phosphorus Sulfur Silicon Relat. Elem., 2020, 195, 730-739.

    Article  CAS  Google Scholar 

  22. Y. Q. Pan, Y. Zhang, M. Yu, Y. Zhang, and L. Wang. Appl. Organomet. Chem., 2020, 34, e5441.

  23. C. Liu, X. X. An, Y. F. Cui, K. F. Xie, and W. K. Dong. Appl. Organomet. Chem., 2020, 34, e5272.

  24. Y. Zhang, M. Yu, Y. Q. Pan, Y. Zhang, L. Xu, and X. Y. Dong. Appl. Organomet. Chem., 2020, 34, e5442.

  25. M. Yu, Y. Zhang, Y. Q. Pan, and L. Wang. Inorg. Chim. Acta, 2020, 509, 119701.

    Article  CAS  Google Scholar 

  26. S. Z. Zhang, J. Chang, H. J. Zhang, Y. X. Sun, Y. Wu, and Y. B. Wang. Chin. J. Inorg. Chem., 2020, 36, 503-514.

  27. J. Chang, S. Z. Zhang, Y. Wu, H. J. Zhang, and Y. X. Sun. Transition Met. Chem., 2020, 45, 279-293.

    Article  CAS  Google Scholar 

  28. X. Xu, J. F. Wang, R. N. Bian, and L. Zhao. J. Coord. Chem., 2020, 73, 2209-2223.

    Article  CAS  Google Scholar 

  29. Q. Zhao, X. X. An, L. Z. Liu, and W. K. Dong. Inorg. Chim. Acta, 2019, 490, 6-15.

  30. L. Z. Liu, L. Wang, M. Yu, Q. Zhao, Y. Zhang, Y. X. Sun, and W. K. Dong. Spectrochim. Acta, Part A, 2019, 222, 117209.

    Article  CAS  Google Scholar 

  31. L. Z. Liu, M. Yu, X. Y. Li, Q. P. Kang, and W. K. Dong. Chin. J. Inorg. Chem., 2019, 35, 1283-1294.

  32. Y. Zhang, L. Z. Liu, Y. D. Peng, N. Li, and W. K. Dong. Transition Met. Chem., 2019, 44, 627-639.

    Article  CAS  Google Scholar 

  33. X. X. An, Q. Zhao, H. R. Mu, and W. K. Dong. Crystals, 2019, 9, 101.

    Article  CAS  Google Scholar 

  34. Y. Zhang, Y. Q. Pan, M. Yu, X. Xu, and W. K. Dong. Appl. Organomet. Chem., 2019, 33, e5240.

    Article  Google Scholar 

  35. L. Wang, Z. L. Wei, Z. Z. Chen, C. Liu, W. K. Dong, and Y. J. Ding. Microchem. J., 2020, 155, 104801.

    Article  CAS  Google Scholar 

  36. Y. Q. Pan, X. Xu, Y. Zhang, Y. Zhang, and W. K. Dong. Spectrochim. Acta, Part A, 2020, 229, 117927.

    Article  CAS  Google Scholar 

  37. Z. L. Wei, L. Wang, J. F. Wang, W. T. Guo, Y. Zhang, and W. K. Dong. Spectrochim. Acta, Part A, 2020, 228, 117775.

    Article  CAS  Google Scholar 

  38. C. Liu, Z. L. Wei, H. R. Mu, W. K. Dong, and Y. J. Ding. J. Photochem. Photobiol. A, 2020, 397, 112569.

    Article  CAS  Google Scholar 

  39. M. Yu, H. R. Mu, L. Z. Liu, N. Li, Y. Bai, and X. Y. Dong. Chin. J. Inorg. Chem., 2019, 35, 1109.

  40. Y. F. Cui, C. Liu, Y. Zhang, and Y. Zhang. Inorg. Nano-Met. Chem., 2021, 51, 288-295.

    Article  CAS  Google Scholar 

  41. Y. X. Sun, Y. Q. Pan, X. Xu, and Y. Zhang. Crystals, 2019, 9, 607.

    Article  CAS  Google Scholar 

  42. G. M. Sheldrick. Acta Crystallogr., Sect. A, 2008, 64, 112.

    Article  Google Scholar 

  43. G. M. Sheldrick. SHELXS-97 and SHELXL-97, Fortran Programs for Crystal Structure Solution and Refinement. University of Göttingen: Göttingen, Germany, 1997.

  44. L. Wang, Z. L. Wei, C. Liu, W. K. Dong, and J. X. Ru. Spectrochim. Acta, Part A, 2020, 239, 118496.

    Article  CAS  Google Scholar 

  45. L. W. Zhang, Y. Zhang, Y. F. Cui, M. Yu, and W. K. Dong. Inorg. Chim. Acta, 2020, 506, 119534.

    Article  CAS  Google Scholar 

  46. T. Feng, L. L. Li, Y. J. Li, and W. K. Dong. Acta Crystallogr., Sect. B, 2021, 77, 168-181.

    Article  CAS  Google Scholar 

  47. Y. Zhang, Y. J. Li, S. Z. Guo, T. Fu, and L. Zhao. Transition Met. Chem., 2020, 45, 485-492.

    Article  CAS  Google Scholar 

  48. P. Mahapatra, M. G. B. Drew, and A. Ghosh. Dalton Trans., 2018, 47, 13957-13971.

    Article  CAS  PubMed  Google Scholar 

  49. X. Xu, T. Feng, S. S. Feng, and W. K. Dong. Appl. Organomet. Chem., 2021, 35, e6057.

  50. S. Maity, T. K. Ghosh, C. J. Gómez-García, and A. Ghosh. Cryst. Growth Des., 2020, 20, 7300-7311.

    Article  CAS  Google Scholar 

  51. S. K. Seth, I. Saha, C. Estarellas, A. Frontera, T. Kar, and S. Mukhopadhyay. Cryst. Growth Des., 2011, 11, 3250-3265.

    Article  CAS  Google Scholar 

  52. P. Manna, S. K. Seth, A. Das, J. Hemming, R. Prendergast, M. Helliwell, S. R. Choudhury, A. Frontera, and S. Mukhopadhyay. Inorg. Chim., 2012, 51, 3557−3571.

    Article  CAS  PubMed  Google Scholar 

  53. S. Tripathi, A. Hossain, S. K. Seth, and S. Mukhopadhyay. J. Mol. Struct., 2020, 1216, 128207.

    Article  CAS  Google Scholar 

  54. J. F. Wang, X. Xu, R. N. Bian, W. K. Dong, and Y. J. Ding. Inorg. Chim. Acta, 2021, 516, 120095.

    Article  CAS  Google Scholar 

  55. R. N. Bian, J. F. Wang, X. Xu, X. Y. Dong, and Y. J. Ding. Appl. Organomet. Chem., 2021, 35, e6040.

  56. G. Singh, J. Sindhu, Manisha, V. Kumar, V. Sharma, S. K. Sharma, S. K. Mehta, M. H. Mahnashi, A. Umar, and R. Kataria. J. Mol. Liq., 2019, 296, 111814.

    Article  CAS  Google Scholar 

  57. Y. J. Li, S. Z. Guo, T. Feng, K. F. Xie, and W. K. Dong. J. Mol. Struct., 2021, 1228, 129796.

    Article  CAS  Google Scholar 

  58. K. F. Xie, J. C. Xu, and P. Liu. Appl. Surf. Sci., 2018, 461, 175-181.

    Article  CAS  Google Scholar 

  59. K. F. Xie, P. Liu, J. F. Zhang, X. J. Li, and L. Fu. Mater. Today Commun., 2020, 24, 10132.

  60. J. F. Wang, R. N. Bian, T. Feng, K. F. Xie, L. Wang, and Y. J. Ding. Microchem. J., 2021, 160, 105676.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21761018), which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. -K. Dong.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 6, pp. 945-957.https://doi.org/10.26902/JSC_id74421

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K.F., Li, L.L., Li, W.D. et al. A NOVEL TETRANUCLEAR NICKEL(II) SALAMO-BASED COMPLEX ADOPTING TWO OPEN CUBIC STRUCTURES: SYNTHESIS, CHRACTERIZATION, DFT CALCULATION, HIRSHFELD ANALYSIS, AND FLUORESCENT PROPERTIES. J Struct Chem 62, 876–888 (2021). https://doi.org/10.1134/S002247662106007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662106007X

Keywords

Navigation