Skip to main content
Log in

DFT Investigation of a Charge-Transfer Complex Formation Between p-Phenylenediamine and 3,5-Dinitrosalicylic Acid

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

This study presents a computational investigation of p-phenylenediamine (PPD) interaction with 3,5-dinitrosalicylic acid (DNS) within PPD/DNS charge transfer (CT) complex. All calculations were performed by M06-2X/6-311+G(d,p) levels of theory in vacuum, water and methanol. EDA analysis was used to control the complexation process and suggested that electrostatic and dispersion energies contributes greatly in stabilizing PPD/DNS CT complex. The results of energy optimization showed that PPD/DNS CT complex is stable with negative complexation energy; the obtained geometries showed that ammonium group of PPD is closed to carboxylate one of DNS enabling the establishment of large number of interactions. Additionally, different analyses were performed on obtained optimized structures: TD-DFT, NBO, QTAIM and NCI. Consequently, NBO, QTAIM and NCI analysis give that PPD/DNS CT complex is stabilized by hydrogen bonding and van der Waals interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anslyn. Modern Physical Organic Chemistry. Sausalito, University Science: CA, 2004. ISBN 978-1-891389-31-3.

    Google Scholar 

  2. H. Lodish, A. Berk, S. Zipursky, and P. Matsudaira. Noncovalent bonds–Molecular Cell Biology (textbook), Baltimore, Darnell, 2000

    Google Scholar 

  3. Noncovalent Bonding in Supramolecular Chemistry / Ed. C. A. Schalley. Viley-VCH, 2007.

    Google Scholar 

  4. A. Karshikoff. Non-Covalent Interactions In Proteins. 1st ed. London, Imperial College Press: U.K., 2006.

    Book  Google Scholar 

  5. K. E. Riley, J. Vondrásek, and P. Hobza. Phys. Chem. Chem. Phys., 2007, 9, 5555–5560.

    Article  CAS  Google Scholar 

  6. E. Anslyn. Modern Physical Organic Chemistry. Sausalito, University Science; CA, 2004.

    Google Scholar 

  7. G. A. Jeffrey and W. Saenger. Hydrogen Bonding in Biological Structures. Springer Verlag; New York, 1994.

    Google Scholar 

  8. J. W. Larson and T. B. McMahon. Inorg. Chem., 1984, 23, 2029–2033.

    Article  CAS  Google Scholar 

  9. J. Emsley. Chem. Soc. Rev., 1980, 9, 91–124.

    Article  CAS  Google Scholar 

  10. B. Raghavendra and E. Arunan. Chem. Phys. Lett., 2008, 467, 37–40.

    Article  CAS  Google Scholar 

  11. E. R. Johnson, D. J. J. McKay, and G. A. DiLabio. Chem. Phys. Lett., 2007, 435, 201–207.

    Article  CAS  Google Scholar 

  12. M. K. Ishaat and A. Ahmad. J. Mol. Struct., 2010, 975, 381–388.

    Article  Google Scholar 

  13. Y. Zhao, and D. G. Truhlar. J. Chem. Phys., 2006, 125, 1–17.

    Google Scholar 

  14. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, 2009 (CT, GaussView v 5.0.9 Visualizer and Builder).

  15. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com: E. J. Baerends, T. Ziegler, A. J. Atkins, J. Autschbach, O. Baseggio, D. Bashford, A. Bérces, F. M. Bickelhaupt, C. Bo, P. M. Boerrigter, L. Cavallo, C. Daul, D. P. Chong, D. V. Chulhai, L. Deng, R. M. Dickson, J. M. Dieterich, D. E. Ellis, M. van Faassen, L. Fan, T. H. Fischer, C. Fonseca Guerra, M. Franchini, A. Ghysels, A. Giammona, S. J. A. van Gisbergen, A. Goez, A. W. Götz, J. A. Groeneveld, O. V. Gritsenko, M. Grüning, S. Gusarov, F. E. Harris, P. van den Hoek, Z. Hu, C. R. Jacob, H. Jacobsen, L. Jensen, L. Joubert, J. W. Kaminski, G. van Kessel, C. König, F. Kootstra, A. Kovalenko, M. V. Krykunov, E. van Lenthe, D. A. McCormack, A. Michalak, M. Mitoraj, S. M. Morton, J. Neugebauer, V. P. Nicu, L. Noodleman, V. P. Osinga, S. Patchkovskii, M. Pavanello, C. A. Peeples, P. H. T. Philipsen, D. Post, C. C. Pye, H. Ramanantoanina, P. Ramos, W. Ravenek, J. I. Rodríguez, P. Ros, R. Rüger, P. R. T. Schipper, D. Schlüns, H. van Schoot, G. Schreckenbach, J. S. Seldenthuis, M. Seth, J. G. Snijders, M. Solà, M. Stener, M. Swart, D. Swerhone, V. Tognetti, G. te Velde, P. Vernooijs, L. Versluis, L. Visscher, O. Visser, F. Wang, T. A. Wesolowski, E. M. van Wezenbeek, G. Wiesenekker, S. K. Wolff, T. K. Woo, A. L. Yakovlev.

  16. T. Lu and F. Chen. J. Comput. Chem., 2012, 33, 580.

    Article  Google Scholar 

  17. W. Humphrey, A. DDalke, and K. Schulten. J. Mol. Graph., 1996, 14, 33.

    Article  CAS  Google Scholar 

  18. A. Suvitha and N. S. Venkataramanan. J. Incl. Phenom. Macrocycl. Chem., 2017, 87, 207–218.

    Article  CAS  Google Scholar 

  19. R. F. W. Bader. Accounts Chem. Res., 1985, 18, 9–15.

    Article  CAS  Google Scholar 

  20. M. Shukla, N. Srivastava, and S. Saha. J. Mol. Struct., 2012, 1021, 153–157.

    Article  CAS  Google Scholar 

  21. O. R. Shehab and A. M. Mansour. J. Mol. Struct., 2013, 1047, 121–135.

    Article  CAS  Google Scholar 

  22. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO, Ver. 3.1, Pittsburgh: Gaussian, Inc, 1992.

    Google Scholar 

  23. F. Weinhold, C. R. Landis, and E. D. Glendening. Int. Rev. Phys. Chem., 2016, 35, 399–440.

    Article  CAS  Google Scholar 

  24. R. F. W Bader. Atoms in Molecules: A Quantum Theory. Oxford University Press: Oxford, 1990.

    Google Scholar 

  25. C. F. Matta and R. J. Boyd. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design. Wiley; Weinheim, 2007.

    Book  Google Scholar 

  26. P. S. V. Kumar, V. R. Vendra, and V. Subramanian. J. Chem. Sci., 2016, 10, 1527–1536.

    Article  Google Scholar 

  27. H. A. Yahia, O. A. Yahia, D. E. Khatmi, R. Belghiche, and A. Bouzitouna. Incl. Phenom. Macrocycl. Chem., DOI 10.1007/s10847-017-0753-1.

  28. A. Shahi and E. Arunan. Phys. Chem. Chem. Phys., 2014, 16, 22935–22952.

    Article  CAS  Google Scholar 

  29. Cao, Bobo, Du, Jiuyao, Cao, Ziping, Sun, Xuejun, Sun, Haitao, Fu, and Hui. DFT study on the dissolution mechanisms of α-cyclodextrin and chitobiose in ionic liquid. Carbohydrate polymers http://dx.doi.org/10.1016/j.carbpol.2017.04.012

  30. E. Zahedi, S. Shaabani, and A. Shiroudi. J. Phys. Chem. A, 2017, 121, 8504–8517.

    Article  CAS  Google Scholar 

  31. N. S. Venkataramanan, A. Suvitha, and Y. Kawazoe. J. Mol. Liq., 2018, 49, 454–462.

    Article  Google Scholar 

  32. N. S. Venkataramanan and A. Suvitha. J. Mol. Graph. Model., 2018, 81, 50–59.

    Article  CAS  Google Scholar 

  33. N. S. Venkataramanan and A. Suvitha, Y. Kawazoe. J. Mol. Graph. Model., 2017, 78, 48–60.

    Article  CAS  Google Scholar 

Download references

Funding

The investigation was supported by the Algerian Ministry of Higher Education and Scientific Research through Project CNEPRU (N°E01520140083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Madi.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 12, pp. 1991-2001.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athmani, A.S., Madi, F., Laafifi, I. et al. DFT Investigation of a Charge-Transfer Complex Formation Between p-Phenylenediamine and 3,5-Dinitrosalicylic Acid. J Struct Chem 60, 1906–1916 (2019). https://doi.org/10.1134/S0022476619120060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619120060

Keywords

Navigation