Skip to main content
Log in

A Quantum Chemical Study of Various Intramolecular Hydrogen Bonds in 4-Amino-3-Pentene-2-Thial

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

B3LYP and MP2 methods with the most popular basis set, 6-311++G(d,p) are applied to optimize the equilibrium conformers of 4-amino-3-pentene-2-thial. Furthermore, to have more reliable energies, the total electron energies of all forms are recomputed at the CBS-4M level of theory. A theoretical investigation of the equilibrium conformers clearly shows that various intramolecular hydrogen bonds (IHBs) such as N–H...S, S–H...N, S–H...π, C–H...N, and C–H...S are the most effective factors in the conformational preference of thialamine, thiolimine, and thialimine groups. Hence, the IHB strengths are evaluated in various resonance-assisted hydrogen bond systems by geometrical factors, topological parameters, and charge transfers corresponding to orbital interactions. Also, the solvent effect on the IHB strength is considered using Tomasi′s PCM. Our results in the gas phase reveal that the thialamine group has extra stability with respect to thiolimine and thialimine ones. The population analyses of all the possible conformers by the NBO method predict that the origin of this tautomeric preference is mainly due to more significant π electron delocalization in the framework of thialamine forms, especially πC=C → π C = S* and Lp(N) → π C = C* charge transfers. Moreover, the excited state properties of IHBs in these systems are investigated theoretically using the time-dependent DFT method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Allison, J. Keddington, and R. E. Shoup. J. Liq. Chromatogr., 1983, 6, 1785–1798.

    Article  CAS  Google Scholar 

  2. G. Yamashita and D. Rabenstein. J. Chromatogr., 1989, 491, 341–354.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Sun, D. L. Smith, and R. E. Shoup. Anal. Biochem., 1991, 197, 69–76.

    Article  CAS  PubMed  Google Scholar 

  4. M. Cappiello, P. G. Vilardo, V. Micheli, et al. Exp. Eye. Res., 2000, 70, 795–803.

    Article  CAS  PubMed  Google Scholar 

  5. W. L. Banwart and J. M. Bremner. Soil. Biol. Biochem., 1975, 7, 359–364.

    Article  CAS  Google Scholar 

  6. J. Terpinski and J. Dabrowski. J. Mol. Struct., 1969, 4, 285–291.

    Article  CAS  Google Scholar 

  7. S. F. Tayyari, M. Fazli, and F. Milani–nejad. J. Mol. Struct. (THEOCHEM.), 2001, 541, 11–15.

    Article  CAS  Google Scholar 

  8. A. Nowroozi, H. Raissi, and F. Farzad. J. Mol. Struct. (THEOCHEM.), 2005, 730, 161–169.

    Article  CAS  Google Scholar 

  9. I. Jimenez–Fabian, A. F. Jalbout, E. Moshfeghi, et al. Int. J. Quan. Chem., 2008, 108, 383–390.

    Article  CAS  Google Scholar 

  10. H. Raissi, A. F. Jalbout, M. Fazli, et al. Int. J. Quan. Chem., 2009, 109, 1497–1504.

    Article  CAS  Google Scholar 

  11. A. Nowroozi, M. Sheibaninia, H. Roohi, et al. Int. J. Quan. Chem., 2011, 111, 586–595.

    Article  CAS  Google Scholar 

  12. A. Nowroozi, H. Roohi, M. Poorsargol, et al. Int. J. Quan. Chem., 2011, 111, 3008–3016.

    Article  CAS  Google Scholar 

  13. M. Shahabi, H. Raissi, and F. Mollania. Struct. Chem., 2015, 26, 491–506.

    Article  CAS  Google Scholar 

  14. G. Gilli and P. Gilli. The Nature of Hydrogen Bond. Oxford: Oxford University, Press, 2009.

    Book  Google Scholar 

  15. P. Sanz, O. Mό, M. Yáñez, et al. ChemPhysChem., 2007, 8, 1950–1958.

    Article  CAS  PubMed  Google Scholar 

  16. I. Alkorta, J. Elguero, O. Mό, et al. Mol. Phys., 2004, 102, 2563–2574.

    Article  CAS  Google Scholar 

  17. G. J. Zhao and K. L. Han. Acc. Chem. Res., 2012, 45, 404–413.

    Article  CAS  PubMed  Google Scholar 

  18. G. Zhao, F. Yu, M. Zhang, et al. J. Phys. Chem. A, 2011, 115, 6390–6393.

    Article  CAS  PubMed  Google Scholar 

  19. A. E. Reed, L. A. Curtis, and F. A. Weinhold. Chem. Rev., 1988, 88, 899–926.

    Article  CAS  Google Scholar 

  20. R. F. W. Bader. Atoms in Molecules: A Quantum Theory. Clarendon, Oxford, 1990.

    Google Scholar 

  21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 03 Program Package. Gaussian, Inc, Pittsburgh, 2003.

    Google Scholar 

  22. E. D. Glendening, A. E. Reed, J. E. Carpenter, et al. NBO Version 3.1, Theoretical Chemistry Institute and Department of Chemistry. Madison, Wisconsin: University of Wisconsin, 1995.

    Google Scholar 

  23. M. Cossi, V. Barone, and J. Cammi. Chem. Phys. Lett., 1996, 255, 327–335.

    Article  CAS  Google Scholar 

  24. S. Miertus, E. Scrocco, and J. Tomasi. Chem. Phys., 1981, 55, 117–129.

    Article  CAS  Google Scholar 

  25. P. Schuster and G. Zundel. The Hydrogen Bond, Recent Development in Theory and Experiment. Nourth–Holland, Amesterdam, 1976.

    Google Scholar 

  26. I. Rozas, I. Alkorta, and J. Elguero. J. Phys. Chem. A, 2001, 105, 10462–10467.

    Article  CAS  Google Scholar 

  27. E. Espinosa and M. Molins. J. Chem. Phys., 2000, 113, 5686–5694.

    Article  CAS  Google Scholar 

  28. M. Jablonski, A. Kaczmarek, and A. J. Sadlej. J. Phys. Chem. A, 2006, 110, 10890–10898.

    Article  CAS  PubMed  Google Scholar 

  29. G. Buemi and F. Zuccarello. J. Mol. Struct. (THEOCHEM.), 2002, 581, 71–85.

    Article  CAS  Google Scholar 

  30. A. Nowroozi. PhD thesis. Mashhad, Iran: Ferdowsi University, 2002.

    Google Scholar 

  31. E. Espinosa, E. Molins, and C. Lecomte. Chem. Phys. Lett., 1998, 285, 170–173.

    Article  CAS  Google Scholar 

  32. E. Espinosa, M. Souhassou, H. Lachekar, et al. Acta Crystallogr. B, 1999, 55, 563–572.

    Article  CAS  PubMed  Google Scholar 

  33. H. S. Biswal and S. J. Wategaonkar. Phys. Chem. A, 2009, 113, 12763–12773.

    Article  CAS  Google Scholar 

  34. P. V. R. Schleyer. Chem. Rev., 2005, 105, 3433–3435.

    Article  CAS  Google Scholar 

  35. T. M. Krygowski and M. K. Cyranski. Chem. Rev., 2001, 101, 1385–1420.

    Article  CAS  PubMed  Google Scholar 

  36. S. J. Grabowski. J. Phys. Org. Chem., 2003, 16, 797–802.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Poorsargol.

Additional information

Original Russian Text © 2018 M. Poorsargol, H. S. Delarami.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 6, pp. 1326–1337, July-August, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorsargol, M., Delarami, H.S. A Quantum Chemical Study of Various Intramolecular Hydrogen Bonds in 4-Amino-3-Pentene-2-Thial. J Struct Chem 59, 1276–1287 (2018). https://doi.org/10.1134/S0022476618060057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618060057

Keywords

Navigation