Skip to main content
Log in

A density functional theory analysis of the molecular hydrogen dissociation on Al n Pt (n = 1-12) clusters

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Bimetallic alloys are considered to be a promising type of catalysts with improved activity and selectivity that are distinct from those of the corresponding pure nanoclusters [1-4]. Using first principles density functional calculations, we study the structures and energies of Al n Pt bimetallic clusters up to 13 atoms. If platinum, nickel, and other transition metal catalysts are particularly important in the catalysis of hydrogen, hydrogen adsorption on a metal surface is an important step in the catalytic reaction. Because of large exothermic energy changes and relatively small activation energies, Al7Pt and Al12Pt could serve as highly efficient and low-cost catalysts for the hydrogen dissociation. To clarify this assumption and achieve a good understanding, the H2 adsorption and dissociation over bimetallic AlPt clusters are systematically investigated in our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Mizukoshi, T. Fujimoto, Y. Nagata, R. Oshima, and Y. Maeda, J Phys. Chem. B, 104, 6028–6032 (2000).

    Article  CAS  Google Scholar 

  2. K. R. Harikumar, S. Ghosh, and C. N. R. Rao, J Phys. Chem. A, 101, 536–540 (1997).

    Article  CAS  Google Scholar 

  3. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Acc. Chem. Res., 33, 27–36 (2000).

    Article  CAS  Google Scholar 

  4. R. L. Whetten, M. N. Shafigullin, J. T. Khoury, T. G. Schaaff, I. Vezmar, M. M. Alvarez, and A. Wilkinson, Acc. Chem. Res., 32, 397–406 (1999).

    Article  CAS  Google Scholar 

  5. C. H. Christensen and J. K. Norskov, J. Chem. Phys., 128, 182503-182503-8 (2008).

  6. F. Tao, M. E. Grass, Y. W. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron, and G. A. Somorjai, Science, 322, 932–934 (2008).

    Article  CAS  Google Scholar 

  7. Y. G. Ma and P. B. Balbuena, J Phys. Chem. C, 112, 14520 (2008).

    Article  CAS  Google Scholar 

  8. O. M. Lovvik and S. M. Opalka, Surf. Sci., 602, 2840–2844 (2008).

    Article  CAS  Google Scholar 

  9. V. Soto-Verdugo and H. Metiu, Surf. Sci., 601, No. 23, 5332–5339 (2007).

    Article  Google Scholar 

  10. W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sun, and Q. Xin, J Phys. Chem. B, 107, No. 26, 6292–6299 (2003).

    Article  CAS  Google Scholar 

  11. P. K. Babu, Y. Y. Tong, H. S. Kim, and A. Wieckowski, J Electroanal. Chem., 524, 157–167 (2002).

    Article  Google Scholar 

  12. H. Q. Li, Q. Xin, W. Z. Li, Z. H. Zhou, L. H. Jiang, S. H. Yang, and G. Q. Sun, Chem. Commun., No. 23, 2776/2777 (2004).

    Google Scholar 

  13. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, V. Radmilovic, N. M. Markovic, and P. N. Ross, J Phys. Chem. B, 106, No. 16, 4181–4191 (2002).

    Article  Google Scholar 

  14. O. Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, and K. I. Ota, Electrochem. Commun., 6, No. 2, 105–109 (2004).

    Article  Google Scholar 

  15. J. L. Fernandez, D. A. Walsh, and A. J. Bard, J Am. Chem. Soc., 127, No. 1, 357–365 (2005).

    Article  CAS  Google Scholar 

  16. P. C. Jennings, B. G. Pollet, and R. L. Johnston, J Phys. Chem. C, 116, 15241–15250 (2012).

    Google Scholar 

  17. D. L. Peng, T. Hihara, and K. Sumiyama, J Mag. Mag. Mat., 277, No. 1, 201–208 (2004).

    Article  CAS  Google Scholar 

  18. Y. Benguedouar, N. Keghouche, and J Belloni, Mater. Sci. Eng., B, t177, No. 1, 27–33 (2012).

    Article  Google Scholar 

  19. Q. Ge, C. Song, and L. Wang, J Comput. Mater. Sci., 35, No. 3, 247–253 (2006).

    Article  Google Scholar 

  20. Y. W. Huang, T. Y. Chou, G. Y. Yu, and S. L. Lee, J Phys. Chem. C, 115, No. 18, 9105–9116 (2011).

    Article  Google Scholar 

  21. W. Chen, D. Schmidt, W. F. Schneider, and C. Wolverton, J Phys. Chem. C, 115, No. 36, 17915–17924 (2011).

    Google Scholar 

  22. Y. Ishikawa, R. R. Diaz-Morales, A. Perez, M. J. Vilkas, and C. R. Cabrera, J Chem. Phys. Lett., 411, No. 4, 404–410 (2005).

    Article  Google Scholar 

  23. M. J. Piotrowski, P. Piquini, Z. H. Zeng, and J. L. F. Da Silva, J Phys. Chem. C, 116, 20540–20549 (2012).

    Google Scholar 

  24. P. Tarakeshwar, T. J. Dhilip Kumar, and N. Balakrishnan, J Chem. Phys., 130, 114301-1-9 (2009).

  25. H. S. Huang, X. M. Wang, D. Q. Zhao, L. F. Wu, X. W. Huang, and Y. C. Li, Acta Phys. Sin., 61, No. 7, 073101 (2012).

    Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakasuji, M. Hada, M. Ehara, K. Toyota, R., Fukuda R. Hasegawa, M. J. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. R. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, J. A. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03 (Revision Co2), Gaussian. Inc., Pittsburgh., PA (2003).

    Google Scholar 

  27. A. D. Becke, J Chem. Phys., 98, 5648–1 (1993).

    Article  CAS  Google Scholar 

  28. C. Peng, P. Y. Ayala, H. B. Schlegel, and M. J. Frisch, J Comput. Chem., 17, No. 1, 49–56 (1996).

    Article  Google Scholar 

  29. C. Gonzalez and H. B. Schlegel, J Chem. Phys., 90, 2154 (1989)

    Article  CAS  Google Scholar 

  30. C. Gonzalez and H. B. Schlegel, J Phys. Chem., 94, No. 14, 5523–5527 (1990).

    Article  Google Scholar 

  31. F. C. Chuang, C. Z. Wang, and K. H. Ho, Phys. Rev. B, 73, No. 12, 125431–1 (2006)

    Google Scholar 

  32. A. Aguado and J. M. Lopez, J Chem. Phys., 130, 064704–1 (2009)

    Article  Google Scholar 

  33. B. K. Rao and P. Jena, J Chem. Phys., 111, 1890 (1999)

    Article  CAS  Google Scholar 

  34. R. R. Zope and T. Baruah, Phys. Rev. A, 64, No. 5, 053202–1 (2001).

    Article  Google Scholar 

  35. X. H. Cheng, D. J. Ding, Y. G. Yu, and M. X. Jin, Chin. J Chem. Phys., 25, 169–176 (2012)

    Article  CAS  Google Scholar 

  36. M. X. Chen, X. H. Yan, and S. H. Wei, J Phys. Chem. A, 111, No. 35, 8659–8662 (2007)

    Article  CAS  Google Scholar 

  37. L. Guo, J Alloys Compd., 466, 463–470 (2008)

    Article  CAS  Google Scholar 

  38. V. A. Gorbunov and L. I. Kurkina, Bull. Russ. Acad. Sci.: Phys., 72, No. 4, 515–519 (2008).

    Article  Google Scholar 

  39. R. Jin, S. Zhang, Y. Zhang, S. Huang, P. Wang, and H. Tian, Int. J Hydrogen Energy, 36, No. 15, 9069–9078 (2011).

    Article  CAS  Google Scholar 

  40. W. Lu, J Zhao, Z. Zhou, S. B. Zhang, and Z. Chen, J Comput. Chem., 30, No. 15, 2509–2514 (2009).

    Google Scholar 

  41. Q. L. Lu and J. G. Wan, J Chem. Phys., 132, 224308–1 (2010).

    Article  CAS  Google Scholar 

  42. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).

    Google Scholar 

  43. R. G. Parr and R. G. Pearson, J Am. Chem. Soc., 105, No. 26, 7512–7516 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Guo.

Additional information

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 56, No. 4, pp. 656-666, July-August, 2015. Original article submitted January 12, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Guo, L., Ren, N. et al. A density functional theory analysis of the molecular hydrogen dissociation on Al n Pt (n = 1-12) clusters. J Struct Chem 56, 608–618 (2015). https://doi.org/10.1134/S0022476615040022

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476615040022

Keywords

Navigation