Skip to main content
Log in

First principles study on proton transfer between amino acid side chains of histidine and aspartic acid in β-structure

  • Self-Organization in Molecular and Supramolecular Compounds
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We have demonstrated possibility of proton transfer between nitrogen atom of imidazole ring in histidine and oxygen atom of carboxylic group in aspartic residues inside peptide of Asp-Ala-His+ using density functional theory calculations. Our NBO and AIM analyzes have shown that the proton transfer takes place between side chain of histidine and aspartic acid residues through the hydrogen bond formation. Transition state structures of proton transfer reaction were calculated in gas and solution phases. The calculated reaction rates show that the proton transfer reaction rate in the gas phase is higher than solution phase. The ionization constant (pK a) value of the lysine residue in peptide was estimated to be 1.09 which is lower than intrinsic pK a value of lysine amino acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Schowen, H. H. Limbach, G. S. Denisov, and R. L. Schowen, Biochim. Biophys. Acta, 1458, No. 1, 43–62 (2000).

    Article  CAS  Google Scholar 

  2. G. Schüürmann, M. Cossi, V. Barone, and J. Tomasi, J. Phys. Chem. A, 102, No. 33, 6706 (1998).

    Article  Google Scholar 

  3. H. Li. Jensen, A. D. Robertson, and P. A. Molina, J. Phys.Chem. A, 109, No. 30, 6634–6643 (2005).

    Article  CAS  Google Scholar 

  4. D. Roy and J. J. Dannenberg, Chem. Phys. Lett., 512, Nos. 4–6, 255–257 (2011).

    Article  CAS  Google Scholar 

  5. J. A. Plumleyand and J. J. Dannenberg, J. Am. Chem. Soc., 132, 1758 (2010).

    Article  Google Scholar 

  6. F. de Brito Mota and R. Rivelino, J. Mol. Struct., 776, Nos. 1–3, 53–59 (2006).

    Article  Google Scholar 

  7. S. Ghosh, S. Mondal, A. Misra, and S. Dalai, J. Mol Struct., 805, Nos. 1–3, 133–141 (2007).

    Article  CAS  Google Scholar 

  8. S. Mondal, D. S. Chowdhuri, S. Ghosh, A. Misra, and S. Dalai, J. Mol. Struct., 810, Nos. 1–3, 81–89 (2007).

    Article  CAS  Google Scholar 

  9. R. I. Najafabadi, M. R. Housaindokht, M. S. Sadeghi Googheri, M. Sargolzaei, and M. Izadyar, Int. J. Quantum Chem., 112, No. 14, 2675–2680 (2012).

    Article  CAS  Google Scholar 

  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT (2004).

  11. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  12. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, New York, (1989).

    Google Scholar 

  13. S. Miertuš and E. T. Scrocco, J. Chem. Phys., 55, 117–129 (1981).

    Google Scholar 

  14. P. Hudáky and A. Perczel, J. Phys. Chem. A, 108, No. 29, 6195–6205 (2004).

    Article  Google Scholar 

  15. H. Eyring, J. Chem. Phys., 3, 107–115 (1935).

    Article  CAS  Google Scholar 

  16. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett., 285, 170–173 (1998).

    Article  CAS  Google Scholar 

  17. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 88, No. 6, 899–926 (1988).

    Article  CAS  Google Scholar 

  18. R. F. W. Bader, Atoms in Molecules: A. Quantum Theory, Oxford University Press, Oxford, UK (1990).

    Google Scholar 

  19. R. Bader, Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, USA (1994).

    Google Scholar 

  20. R. F. W. Bader, Chem. Rev., 91, 893–928 (1991).

    Article  CAS  Google Scholar 

  21. R. F. W. Bader, Acc. Chem. Res., 18, 9–15 (1985).

    Article  CAS  Google Scholar 

  22. Y. Nozaki and C. Tanford, Methods Enzymol., 11, 715–734 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sargolzaei.

Additional information

Original Russian Text © 2014 M. Sargolzaei, M. Afshar, M.S. Sadeghi, H. Hamidian.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargolzaei, M., Afshar, M., Sadeghi, M. et al. First principles study on proton transfer between amino acid side chains of histidine and aspartic acid in β-structure. J Struct Chem 55, 1627–1634 (2014). https://doi.org/10.1134/S0022476614080332

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476614080332

Keywords

Navigation