Skip to main content
Log in

Parameters of Energy Metabolism and Adenylate System in Mytilus galloprovincialis Tissues under Moderate Hypoxia

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The effect of moderate hypoxia on the processes of energy metabolism was studied in the tissues (gills, hepatopancreas) of the Mediterranean mussel Mytilus galloprovincialis (Lamarck, 1819). The mollusks was kept at 6.8–6.9 mg O2 L–1 (control group) or 1.9–2.0 mg O2 L–1 (experimental group). In both cases, water temperature was 22 ± 1°C, salinity 17–18‰, exposure time 72 h. Dissolved oxygen content in water was lowered by nitrogen bubbling for 4–5 h. Under moderately hypoxic conditions, a complex of biochemical reactions aimed at retaining the baseline energy status developed in the mussel tissues. While aerobic processes were clearly on the decline, as evidenced by a decrease in succinate dehydrogenase (SDH) activity, anaerobic glycolysis intensified. Aldolase and malate dehydrogenase (MDH) activities, as well as tissue pyruvate level, increased. Both lactate dehydrogenase (LDH) activity and lactate levels in mussel tissues remained unchanged. The state of the M. galloprovincialis adenylate system was comprehensively characterized. The tissue content of the ATP fraction remained at the level of control values, reflecting an adaptive trend in the reorganization of tissue metabolism. The ability of the hepatopancreas to accumulate ADP and AMP fractions from the circulatory systems under conditions of experimental hypoxic load was noted for the first time. Presumably, this may largely explain the increase in the pool of adenylates and the decrease in the adenylate energy charge in this organ. It was concluded that the reorganization of carbohydrate metabolism in M. galloprovincialis under moderately hypoxic conditions allows the mussel to retain the energy status of its tissues and, therefore, to populate challenging (hypoxic) waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Haszprunar G, Wanninger A (2012) Molluscs. Current Biol 22(13): R510–514. https://doi.org/10.1016/j.cub.2012.05.039

    Article  CAS  Google Scholar 

  2. Zaitsev YP (1986) Contourobionts in ocean monitoring. Environ Monit Assess 7(1): 31–38. https://doi.org/10.1007/BF00398026

    Article  CAS  PubMed  Google Scholar 

  3. Berger VJ, Kharazova AD (1997) Mechanisms of salinity adaptations in marine molluscs. Hydrobiologia 355: 115–126.

    Article  CAS  Google Scholar 

  4. Miyamoto Y, Iwanaga C (2017) Effects of sulphide on anoxia-driven mortality and anaerobic metabolism in the ark shell Anadara kagoshimensi. J Mar Biol Assoc UK 97(2): 329–336. https://doi.org/10.1017/S0025315416000412

    Article  CAS  Google Scholar 

  5. Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev 79: 207–233. https://doi.org/10.1017/s1464793103006195

    Article  PubMed  Google Scholar 

  6. Storey KB (2004) Gene regulation in physiological stress. Inter Congress Ser 1275: 1–13.

    Article  Google Scholar 

  7. Larade K, Storey KB (2002) A profile of the metabolic responses to anoxia in marine invertebrates. Cell and molecular responses to stress. Vol. 3. Sensing, signaling and cell adaptation. 346 p.

    Google Scholar 

  8. Tielens A, Van Hellemond J (1998) The electron transport chain in anaerobically functioning eukaryotes. Biochim Biophys Acta 1365: 71–78. https://doi.org/10.1016/s0005-2728(98)00045-0

    Article  CAS  PubMed  Google Scholar 

  9. Kladchenko ES, Andreyeva AY, Kukhareva TA, Soldatov AA (2020) Morphologic, cytometric and functional characterisation of Anadara kagoshimensis hemocytes. Fish Shellfish Immunol 98: 1030–1032.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenberg R, Nilsson HC, Diaz RJ (2001) Response of benthic fauna and changing sediment redox profiles over a hypoxic gradient. Estuar Coast Shelf S 53(3): 343–350.

    Article  CAS  Google Scholar 

  11. Hilbish TJ, Mullinax A, Dolven SI, Meyer A, Koehn RK, Rawson P (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Mar Biol 136: 69–77. https://doi.org/10.1007/s002270050010

    Article  Google Scholar 

  12. Benali I, Boutiba Z, Merabet A, Chèvre N (2015) Integrated use of biomarkers and condition indices in mussels (Mytilus galloprovincialis) for monitoring pollution and development of biomarker index to assess the potential toxic of coastal sites. Marine Pollution Bulletin 95: 385–394.

    Article  CAS  PubMed  Google Scholar 

  13. Kulikova AD, Soldatov AA, Andreenko TI (2015) Tissue transaminase activities in the black-sea mollusc Mytilus galloprovincialis Lam. with different shell color. J Evol Biochem Physiol 51(1): 23–31. https://doi.org/10.1134/S0022093015010044

    Article  CAS  Google Scholar 

  14. Ribera D, Narbonne JF, Michel X, Livingstone DR, O’Hara S (1991) Responses of antioxidants and lipid peroxidation in mussels to oxidative damage exposure. Comp Biochem Physiol 100: 177–181. https://doi.org/10.1016/0742-8413(91)90149-n

    Article  CAS  Google Scholar 

  15. Soldatov AA, Gostyukhina OL, Golovina IV (2008) State of the antioxidant enzyme complex in tissues of the Black Sea mollusc Mytilus galloprovincialis under natural oxidative stress. J Evol Biochem Physiol 44(2): 175–182. https://doi.org/10.1134/S0022093008020047

    Article  CAS  Google Scholar 

  16. Soldatov AA, Gostyukhina OL, Golovina IV (2014) Functional states of antioxidant enzymatic complex of tissues of Mytillus galloprovincialis Lam. under conditions of oxidative stress. J Evol Biochem Physiol 50(3): 206–214.

    Article  CAS  Google Scholar 

  17. Kamyshnikov VS (2004) Handbook of Clinical and biochemical studies and laboratory diagnostics. MEDpress-inform, M, 494 p.

    Google Scholar 

  18. Lantushenko AO, Vodiasova EA, Kokhan AS, Meger YaV, Soldatov AA (2023) Aldolase of Mytilus galloprovincialis, Lamarck, 1819: Gene structure, tissue specificity of expression level and activity. Comp Biochem Physiol Part B: Biochem Molecular Biol 267: 110862. https://doi.org/10.1016/j.cbpb.2023.110862

    Article  CAS  Google Scholar 

  19. Kolesnikova EE, Golovina IV (2020) Oxidoreductase Activities in Oxyphilic Tissues of the Black Sea Ruff Scorpaena porcus under Short-term Hydrogen Sulfide Loading. J Evol Biochem Physiol 56(5): 459–470. https://doi.org/10.1134/S0022093020050099

    Article  CAS  Google Scholar 

  20. Rezyapkin VI, Slyshenkov VS, Zavodnik IB, Burd VN, Sushko LI, Romanchuk EI, Karaedova LM (2009) Laboratory workshop on biochemistry and biophysics. GrSU, Grodno, 175 p.

    Google Scholar 

  21. Itzhaki RF, Gill DM (1964) A micro-biuret method for estimating proteins. Analytical Biochemistry 9(4): 401–410.

    Article  CAS  PubMed  Google Scholar 

  22. Holm-Hansen O, Booth CR (1966) The measurement of adenosine triphosphate in the Ocean and its ecological significance. Limnol Oceanogr 11(4): 510–519. https://doi.org/10.4319/lo.1966.11.4.0510

    Article  CAS  Google Scholar 

  23. Atkinson DE (1968) The energy charge of the adenylate pools as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7(11): 4030–4034. https://doi.org/10.1021/bi00851a033

    Article  CAS  PubMed  Google Scholar 

  24. Iverson TM (2013) Catalytic mechanisms of complex II enzymes: A structural perspective. Biochimica et Biophysica Acta 1827(5): 648–657. https://doi.org/10.1016/j.bbabio.2012.09.008

    Article  CAS  PubMed  Google Scholar 

  25. Bacchiocchi S, Principato G (2000) Mitochondrial contribution to metabolic changes in the digestive gland of Mytilus galloprovincialis during anaerobiosis. J Exp Zool 286: 107–113.

    Article  CAS  PubMed  Google Scholar 

  26. Soldatov AA, Andreenko TI, Sysoeva IV, Sysoev AA (2009) Tissue specificity of metabolism in the bivalve mollusc Anadara inaequivalvis Br. under conditions of experimental anoxia. J Evol Biochem Physiol 45(3): 349–355. https://doi.org/10.1134/S002209300903003X

    Article  CAS  Google Scholar 

  27. Harcet M, Perina D, Pleše B (2013) Opine dehydrogenases in marine invertebrates. Biochemical genetics 51(9): 666–676. https://doi.org/10.1007/s10528-013-9596-7

    Article  CAS  PubMed  Google Scholar 

  28. Vázquez-Dorado S, De Carlos A, Comesaña AS, Sanjuán A (2013) Phylogenetic comparison of opine dehydrogenase sequences from marine invertebrates. Biochem Genet 51(1–2): 54–65. https://doi.org/10.1007/s10528-012-9551-z

    Article  CAS  Google Scholar 

  29. Zammit VA (1978) Possible relationship between energy metabolism of muscle and oxygen binding characteristics of haemocyanin of cephalopods. J Mar Biol Assoc UK 58:421–424. https://doi.org/10.1017/S0025315400028083

    Article  CAS  Google Scholar 

  30. Vázquez-Dorado SSanjuan A, Comesaña AS, Carlos A (2011) Identification of octopine dehydrogenase from Mytilus galloprovincialis. Comp Biochem Physiol Part B 160: 94–103. https://doi.org/10.1016/j.cbpb.2011.07.003

    Article  CAS  Google Scholar 

  31. Storey KB, Dando PR (1982) Substrate specificities of octopine dehydrogenases from marine invertebrates. Comp Biochem Physiol B Comp Biochem 73: 521–528. https://doi.org/10.1016/0305-0491(82)90069-4

    Article  Google Scholar 

  32. Gosling E (1981) Ecological genetics of the mussels Mytilus edulis and M. galloprovincialis on Irish coasts. Marine Ecology Progress Series 4(2): 221–227. https://doi.org/10.3354/meps004221

    Article  Google Scholar 

  33. Sokolova IM, Sokolov EP, Fouzia Haider F (2019) Mitochondrial Mechanisms Underlying Tolerance to Fluctuating Oxygen Conditions: Lessons from Hypoxia-Tolerant Organisms. Integr Comp Biol 59(4): 938–952. https://doi.org/10.1093/icb/icz047

    Article  CAS  PubMed  Google Scholar 

  34. Ivanina AV, Nesmelova I, Leamy L, Sokolov EP, Sokolova IM (2016) Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol 219(Pt 11): 1659–1674. https://doi.org/10.1242/jeb.134700

    Article  PubMed  Google Scholar 

  35. Hardie DG (2003) Minireview. The AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179–5183. https://doi.org/10.1210/en.2003-0982

    Article  CAS  PubMed  Google Scholar 

  36. Goodchild CG, Frederich M, Zeeman SI (2015) AMP-activated protein kinase is a biomarker of energetic status in freshwater mussels exposed to municipal effluents. Sci Total Environ 512: 201–209. https://doi.org/10.1016/j.scitotenv.2015.01.065

    Article  CAS  PubMed  Google Scholar 

  37. Guévélou E, Huvet A, Sussarellu R, Milan M, Guo X, Li L, Zhang G, Quillien V, Daniel JY, Quéré C, Boudry P, Corporeau C (2013) Regulation of a truncated isoform of AMP-activated protein kinase α (AMPKα) in response to hypoxia in the muscle of Pacific oyster Crassostrea gigas. J Comp Physiol B 183(5): 597–611. https://doi.org/10.1007/s00360-013-0743-6

    Article  CAS  PubMed  Google Scholar 

  38. Sokolov EP, Markert S, Hinzke T, Hirschfeld C, Becher D, Ponsuksili S, Sokolova IM (2019) Effects of hypoxia-reoxygenation stress on mitochondrial proteome and bioenergetics of the hypoxia-tolerant marine bivalve Crassostrea gigas. J Proteomics 194: 99–111. https://doi.org/10.1016/j.jprot.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  39. Longnus SL, Wambolt RB, Parsons HL, Brownsey RW, Allard MF (2003) 5-Aminoimidazole- 4-carboxamide 1-beta-D-ribofuranoside (AICAR) stimulates myocardial glycogenolysis by allosteric mechanisms. Am J Physiol Regul Integr Comp Physiol 284: R936–R944. https://doi.org/10.1152/ajpregu.00319.2002

    Article  CAS  PubMed  Google Scholar 

  40. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280: 29060–29066. https://doi.org/10.1074/jbc.M503824200

    Article  CAS  PubMed  Google Scholar 

  41. Vodáková B, Douda K (2019) Variation in Glycogen Distribution among Freshwater Bivalve Tissues: Simplified Protocol and Implications. J Aquat Anim Health 31(1): 107–111. https://doi.org/10.1002/aah.10057. Epub 2019 Feb 4.

    Article  CAS  PubMed  Google Scholar 

  42. Kemp BE, Stapleton D, Campbell DJ, Chen Z-P, Murthy S, Walter M, Gupta A, Adams JJ, Katsis F, van Denderen B, Jennings IG, Iseli T, Michell BJ, Witters LA (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31: 162–168. https://doi.org/10.1042/bst0310162

    Article  CAS  PubMed  Google Scholar 

  43. Barnes BR, Marklund S, Steiler TL, Walter M, Hjälm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, Andersson L (2004) The 5-AMP-activated protein kinase 3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279: 38441–38447. https://doi.org/10.1074/jbc.M405533200

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.N. Sysoeva PhD, and A.A. Sysoev for their methodological assistance in determining the parameters of the adenylate system.

Funding

This work was supported by ongoing funding to Kovalevsky Institute of Biology of the Southern Seas, Sevastopol (No. 121041400077-1). No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (A.A.S., K.A.S.), organization of experiments (R.V.N.), data collection (K.A.S., G.I.V., B.Yu.V., Sh.N.E.), data processing (A.A.S., K.A.S., G.I.V., B.Yu.V., Sh.N.E.), writing and editing the manuscript (A.A.S., K.A.S.).

Corresponding author

Correspondence to A. A. Soldatov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Polyanovsky

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Russian Text © The Author(s), 2023, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2023, Vol. 59, No. 6, pp. 532–540https://doi.org/10.31857/S0044452923060050.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokhan, A.S., Soldatov, A.A., Golovina, I.V. et al. Parameters of Energy Metabolism and Adenylate System in Mytilus galloprovincialis Tissues under Moderate Hypoxia. J Evol Biochem Phys 59, 1986–1994 (2023). https://doi.org/10.1134/S002209302306008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002209302306008X

Keywords:

Navigation