Skip to main content
Log in

Role of L-Type Calcium Channels in Increased Fatigue of the Rat Soleus Muscle under Functional Unloading

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Excessive long-term accumulation of calcium ions in the myoplasm of skeletal muscles can negatively affect mitochondria and lead to muscle dysfunction. The aim of our study was to identify the role of L-type calcium channels in the development of increased fatigue of the rat soleus muscle under functional unloading. Young male Wistar rats were divided into three groups of 8 animals each: vivarium control group (C), group exposed to 7-day hindlimb unloading (7HS), and group exposed to 7-day hindlimb unloading with daily intraperitoneal injections of nifedipine (7 mg/kg body weight) (7HS+N). Nifedipine administration during hindlimb unloading prevented the upregulation of calcium-dependent phosphorylation of calcium-calmodulin kinase II (CaMKII) and an increase in fatigue, as well as promoted the preservation of mitochondrial proteins, mtDNA, and mRNA expression of a number of regulatory genes of mitochondrial biogenesis in the rat soleus muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Sharlo K, Tyganov SA, Tomilovskaya E, Popov DV, Saveko AA, Shenkman BS (2021) Effects of Various Muscle Disuse States and Countermeasures on Muscle Molecular Signaling. Int J Mol Sci 23(1): 468. https://doi.org/10.3390/ijms23010468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shenkman BS, Kozlovskaya IB (2019) Cellular Responses of Human Postural Muscle to Dry Immersion. Front Physiol 10: 187. https://doi.org/10.3389/fphys.2019.00187

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ingalls CP, Warren GL, Armstrong RB (1999) Intracellular Ca2+ transients in mouse soleus muscle after hindlimb unloading and reloading. J Appl Physiol 87(1): 386–390. https://doi.org/10.1152/jappl.1999.87.1.386

    Article  CAS  PubMed  Google Scholar 

  4. Ingalls CP, Wenke JC, Armstrong RB (2001) Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles. Aviat Space Envir Med 72 (5): 471–476.

    CAS  Google Scholar 

  5. Krivoi II, Kravtsova VV, Altaeva EG, Kubasov IV, Prokof’ev AV, Drabkina TM, Nikol’skii EE, Shenkman BS (2008) Decrease in the electrogenic contribution of Na,K-ATPase and resting membrane potential as a possible mechanism of calcium ion accumulation in filaments of the rat musculus soleus subjected to the short-term gravity unloading. Biofizika 53 (6): 1051–1057.

    CAS  PubMed  Google Scholar 

  6. Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Biomed Res Int 2015: 720172. https://doi.org/10.1155/2015/720172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR (2011) Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab 14 (2): 196–207. https://doi.org/10.1016/j.cmet.2011.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu Z, Wang H, Tang W, Wang S, Tian X, Zhu Y, He H (2021) Mitochondrial Ca(2+) oscillation induces mitophagy initiation through the PINK1-Parkin pathway. Cell Death and Disease 12 (7): 632. https://doi.org/10.1038/s41419-021-03913-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morey-Holton ER, Globus RK (2002) Hindlimb unloading rodent model: technical aspects. J Appl Physiol 92(4): 1367–1377. https://doi.org/10.1152/japplphysiol.00969.2001

    Article  PubMed  Google Scholar 

  10. Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1): 170–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burke RE, Levine DN, Salcman M, Tsairis P (1974) Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol 238(3): 503–514. https://doi.org/10.1113/jphysiol.1974.sp010540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roy RR, Zhong H, Monti RJ, Vallance KA, Edgerton VR (2002) Mechanical properties of the electrically silent adult rat soleus muscle. Muscle and Nerve 26(3): 404–412. https://doi.org/10.1002/mus.10219

    Article  PubMed  Google Scholar 

  13. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9): e45. https://doi.org/10.1093/nar/29.9.e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matoba TWY, Ohira Y (1993) β-Guanidinopropionic acid suppresses suspension-induced changes in myosin expression in rat skeletal muscle. Med Sci Sports Exer 25: 157.

    Article  Google Scholar 

  15. Mulder ER, Kuebler WM, Gerrits KH, Rittweger J, Felsenberg D, Stegeman DF, de Haan A (2007) Knee extensor fatigability after bedrest for 8 weeks with and without countermeasure. Muscle Nerve 36(6): 798–806. https://doi.org/10.1002/mus.20870

    Article  PubMed  Google Scholar 

  16. Sharlo K, Lvova I, Turtikova O, Tyganov S, Kalashnikov V, Shenkman B (2022) Plantar stimulation prevents the decrease in fatigue resistance in rat soleus muscle under one week of hindlimb suspension. Arch Biochem Biophys 718: 109150. https://doi.org/10.1016/j.abb.2022.109150

    Article  CAS  PubMed  Google Scholar 

  17. Altaeva EG, Ogneva IV, Shenkman BS (2010) Dynamics of calcium levels and changes SERCA content in muscle fibers of rats and Mongolian gerbils during hind limb unloadings of various duration. Tsitologiia 52 (9): 770–775. (In Russ).

    CAS  PubMed  Google Scholar 

  18. Altamirano F, Valladares D, Henriquez-Olguin C, Casas M, Lopez JR, Allen PD, Jaimovich E (2013) Nifedipine treatment reduces resting calcium concentration, oxidative and apoptotic gene expression, and improves muscle function in dystrophic mdx mice. PloS One 8(12): e81222. https://doi.org/10.1371/journal.pone.0081222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Andersson DC, Meli AC, Reiken S, Betzenhauser MJ, Umanskaya A, Shiomi T, D’Armiento J, Marks AR (2012) Leaky ryanodine receptors in beta-sarcoglycan deficient mice: a potential common defect in muscular dystrophy. Skelet Muscle 2(1): 9. https://doi.org/10.1186/2044-5040-2-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kano Y, Sonobe T, Inagaki T, Sudo M, Poole DC (2012) Mechanisms of exercise-induced muscle damage and fatigue: Intracellular calcium accumulation. J Phys Fitness Sports Med 1 (3): 505–512. https://doi.org/10.7600/jpfsm.1.505

    Article  Google Scholar 

  21. Zhang Y, Marsboom G, Toth PT, Rehman J (2013) Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells. PloS One 8(10): e77077. https://doi.org/10.1371/journal.pone.0077077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutrit 93 (4): 884S–890S. https://doi.org/10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Perrone M, Patergnani S, Di Mambro T, Palumbo L, Wieckowski M, Giorgi C, Pinton P (2022) Calcium homeostasis in the control of mitophagy. Antioxid Redox Signal 2023 38: 581–598. https://doi.org/10.1089/ars.2022.0122

    Article  CAS  Google Scholar 

  24. Walsh MA, Zhang Q, Musci RV, Hamilton KL (2022) The combination of NRF1 and Nrf2 activators in myoblasts stimulate mechanisms of proteostasis without changes in mitochondrial respiration. Redox Muscle Physiol Exerc Sport 2022: 1. https://doi.org/10.1016/j.rimpes.2022.100001

    Article  CAS  Google Scholar 

  25. Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K (2020) Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology. Biomolecules 10 (2): 320. https://doi.org/10.3390/biom10020320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, Lu R, Cohen P, Graham NA, Benayoun BA, Merry TL, Lee C (2021) MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun 12(1): 470. https://doi.org/10.1038/s41467-020-20790-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mukhina AM, Altaeva EG, Nemirovskaia TL, Shenkman BS (2006) Role of L-type Ca-channels in Ca2+ accumulation and changes in distribution of myosin heavy chain and SERCA isoforms in rat M. soleus under gravitational unloading. Russ J Physiol 92 (11): 1285–1295. (In Russ).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (RSF project no. 21-75-00063).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (B.S.Sh., K.A.Sh.), data collection (I.D.L., D.A.S., S.A.T.), data processing (I.D.L., K.A.Sh.), writing and editing the manuscript (B.S.Sh., K.A.Sh., I.D.L., D.A.S., S.A.T.)

Corresponding author

Correspondence to K. A. Sharlo.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

All applicable international, national, and/or institutional principles for the care and use of animals were followed. All experimental procedures performed with the involvement of animals complied with ethical standards approved by legal acts of the Russian Federation, the principles of the Basel Declaration, and the recommendations of the Biomedical Ethics Committee at the Institute of Biomedical Problems of the Russian Academy of Sciences (Minutes no. 629, 06.12.2022).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2023, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2023, Vol. 109, No. 4, pp. 517–529https://doi.org/10.31857/S086981392304009X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharlo, K.A., Lvova, I.D., Tyganov, S.A. et al. Role of L-Type Calcium Channels in Increased Fatigue of the Rat Soleus Muscle under Functional Unloading. J Evol Biochem Phys 59, 620–629 (2023). https://doi.org/10.1134/S0022093023020278

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093023020278

Keywords:

Navigation