Skip to main content
Log in

Apoptotic, Cytotoxic and Antimigratory Activities of Phenolic Compounds

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the biological activities of chrysin (CRY), curcumin (CUR), and ellagic acid (EA) by comparing the anti-proliferative, anti-migration effects, and apoptotic gene expressions between the three human cancer cell lines: lung (A549), liver (HEP3B), and breast (MCF-7) compared to normal human fibroblast cell line (L929). Antiproliferative effects of certain phenolic compounds were determined by the MTS assay. Cells were treated with different concentrations of the compounds for two consecutive days. Their effect on cell migration was evaluated using the wound-healing assay. Apoptosis was evaluated by Bax, Bcl-2, Cas-3, Cas-8, Cas-9, Cas-10, CDK 2, CDK4, CDK6, CCNB1, and CCND2 gene expressions. The MTS assay showed that the compounds had antiproliferative effects on A549, HEP3B, and MCF-7 cell lines in a dose- and time-dependent manner. All three compounds also suppressed the migration of the tumor cell lines, significantly increased the levels of apoptotic gene expression, and induced apoptotic cell death. This study shows that chrysin, curcumin, and ellagic acid could be considered promising chemotherapeutic agents in the treatment of lung, liver, and breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Falzone L, Salomone S, Libra M (2018) Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front pharmacol 9: 1300. https://doi.org/10.3389/fphar.2018.01300

    Article  CAS  Google Scholar 

  2. Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK (2019) Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 10: 47. https://doi.org/10.3390/biom10010047

    Article  CAS  Google Scholar 

  3. Samarghandian S, Azimi-Nezhad M, Borji A, Hasanzadeh M, Jabbari F, Farkhondeh T, Samini M (2016) Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn Mag 12: 436–440. https://doi.org/10.4103/0973-1296.191453

    Article  Google Scholar 

  4. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5: e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  Google Scholar 

  5. Mehdi SH, Zafaryab M, Nafees S, Khan A, Ahmad I, Hafeez ZB, Rizvi MA (2019) Chrysin sensitizes human lung cancer cells to tumour necrosis factor related apoptosis-inducing ligand (TRAIL) mediated apoptosis. Asia Pac J Clin Oncol 4(2): 27–33. DOI 10.31557/APJCB.2019.4.2.27-33

    CAS  Google Scholar 

  6. Zhang H, Li X, Wu K, Wang M, Liu P, Wang X, Deng R (2017) Antioxidant Activities and Chemical Constituents of Flavonoids from the Flower of Paeonia ostii. Molecules 22: 5. https://doi.org/10.3390/molecules22010005

    Article  CAS  Google Scholar 

  7. Stanić Z (2017) Curcumin, a Compound from Natural Sources, a True Scientific Challenge-A Review. Plant Foods Hum Nutr 72(1): 1–12. https://doi.org/10.1007/s11130-016-0590-1

    Article  CAS  Google Scholar 

  8. Alfei S, Marengo B, Zuccarı G (2020) Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins? Antioxidants 9(8): 707. https://doi.org/10.3390/antiox9080707

    Article  CAS  Google Scholar 

  9. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D (2018) Flavonoids in Cancer and Apoptosis. Cancers (Basel) 11(1): 28. https://doi.org/10.3390/cancers11010028

  10. Liang Cc, Park Ay, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2: 329–333. https://doi.org/10.1038/nprot.2007.30

    Article  CAS  Google Scholar 

  11. Glasauer A, Chandel NS (2014) Targeting antioxidants for cancer therapy. Biochem Pharmacol 92: 90–101. https://doi.org/10.1016/j.bcp.2014.07.017

    Article  CAS  Google Scholar 

  12. Carrasco-Torres G, Baltıérrez-Hoyos R, Andrade-Jorge E, Vılla-Treviño S, Trujillo-Ferrara JG, Vásquez-Garzón VR (2017) Cytotoxicity, oxidative stress, cell cycle arrest, and mitochondrial apoptosis after combined treatment of hepatocarcinoma cells with maleic anhydride derivatives and quercetin. Oxid Med Cell Longev 2017: 2734976. https://doi.org/10.1155/2017/2734976

    Article  CAS  Google Scholar 

  13. Ströfer M, Jelkmann W, Depping R (2011) Curcumin decreases survival of Hep3B liver and MCF-7 breast cancer cells: the role of HIF. Strahlenther Onkol 187: 393–400. https://doi.org/10.1007/s00066-011-2248-0

    Article  Google Scholar 

  14. Alam MN, Almoyad M, Huq F (2018) Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int 2018: 4154185. https://doi.org/10.1155/2018/4154185

    Article  CAS  Google Scholar 

  15. Kim HJ, Park SY, Park OJ, Kim YM (2013) Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep 8: 282–286. https://doi.org/10.3892/mmr.2013.1497

    Article  CAS  Google Scholar 

  16. Boatright KM, Renatus M, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11: 529–541. https://doi.org/10.1016/S1097-2765(03)00051-0

    Article  CAS  Google Scholar 

  17. Singh N (2007) Apoptosis in health and disease and modulation of apoptosis for therapy: An overview. Indian J Clin Biochem 222: 6–16. https://doi.org/10.1007/BF02913307

    Article  Google Scholar 

  18. Kim EJ, Kim GT, Kim BM, Lim EG, Kim SY, Kim YM (2017) Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells. BMC Complement Altern Med 17: 1–12. https://doi.org/10.1186/S12906-017-1702-7/FIGURES/7

    Article  CAS  Google Scholar 

  19. Anantram A, Degani M (2019) Targeting cancer’s Achilles’ heel: role of BCL-2 inhibitors in cellular senescence and apoptosis. 11: 2287–2312. https://doi.org/10.4155/FMC-2018-0366

  20. Horn S, Hughes MA, Schilling R, Sticht C, Tenev T, Ploesser M, Meier P, Sprick MR, MacFarlane M, Leverkus M (2017) Caspase-10 negatively regulates caspase-8-mediated cell death, switching the response to CD95L in favor of NF-κB activation and cell surv Cell Rep 19: 785–797. https://doi.org/10.1016/j.celrep.2017.04.010

  21. Engels IH, Totzke G, Fischer U, Schulze-Osthoff K, Jänicke RU (2005) Caspase-10 sensitizes breast carcinoma cells to TRAIL-induced but not tumor necrosis factor-induced apoptosis in a caspase-3-dependent manner. Mol Cell Biol 25: 2808–2818. https://doi.org/10.1128/MCB.25.7.2808-2818.2005

    Article  CAS  Google Scholar 

  22. Fischer U, Stroh C, Schulze-Osthoff K (2006) Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene 25: 152–159. https://doi.org/10.1038/sj.onc.1209015

    Article  CAS  Google Scholar 

  23. Lamy L, Ngo VN, Emre NCT, Shaffer AL 3rd, Yang Y, Tian E, Nair V, Kruhlak MJ, Zingone A, Landgren O, Staudt LM (2013) Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23: 435–449. https://doi.org/10.1016/j.ccr.2013.02.017

    Article  CAS  Google Scholar 

  24. Fernandes-Alnemri TRC, Armstrong J, Krebs SM, Srinivasula L, Wang F, Bullrich LC, Fritz JA, Trapani KJ, Tomaselli G, Litwack ES (1996) In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci 93: 7464–7469. https://doi.org/10.1073/pnas.93.15.7464

    Article  CAS  Google Scholar 

  25. Samarghandian S, Nezhad MA, Mohammadi G (2014) Role of caspases, Bax and Bcl-2 in chrysin-induced apoptosis in the A549 human lung adenocarcinoma epithelial cells. Anticancer Agents Med Chem 14: 901–909. https://doi.org/10.2174/1871520614666140209144042

    Article  CAS  Google Scholar 

  26. Xu Y, Tong Y, Ying J, Lei Z, Wan L, Zhu X, Ye F, Mao P, Wu X, Pan R, Peng B, Liu Y, Zhu J (2018) Chrysin induces cell growth arrest, apoptosis, and ER stress and inhibits the activation of STAT3 through the generation of ROS in bladder cancer cells. Oncol Lett 15: 9117–9125. https://doi.org/10.3892/ol.2018.8522

    Article  CAS  Google Scholar 

  27. Zhang H, Li X, Wu K, Wang M, Liu P, Wang X, Deng R (2016) Antioxidant activities and chemical constituents of flavonoids from the flower of paeonia ostii. Molecules 22: 5. https://doi.org/10.3390/molecules22010005

    Article  CAS  Google Scholar 

  28. Cárdenas M, Marder M, Blank VC, Roguın LP (2006) Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg Med Chem 14: 2966–2971. https://doi.org/10.1016/j.bmc.2005.12.021

    Article  CAS  Google Scholar 

  29. Parajuli P, Joshee N, Rimando AM, Mittal S, Yadav AK (2009) In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta medica75: 41–48. https://doi.org/10.1055/s-0028-1088364

    Article  CAS  Google Scholar 

  30. Kim ND, Mehta R, Yu W, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R, Ramachandran C, Rabi T, Kaplan B, Lansky E (2002) Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat 71: 203–217. https://doi.org/10.1023/a:1014405730585

    Article  CAS  Google Scholar 

  31. Liu Q, Liang X, Niu C, Wang X (2018) Ellagic acid promotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway. Exp Ther Med 16: 347–352. https://doi.org/10.3892/etm.2018.6193.

    Article  Google Scholar 

  32. Yousuf M, Shamsi A, Khan P, Shahbaaz M, AlAjmi MF, Hussain A, Hassan GM, Islam A, Rizwanul Haque QM, Hassan MI (2020) Ellagic Acid Controls Cell Proliferation and Induces Apoptosis in Breast Cancer Cells via Inhibition of Cyclin-Dependent Kinase 6. Int J Mol Sci. 21: 3526. https://doi.org/10.3390/ijms21103526

    Article  CAS  Google Scholar 

  33. Liu Q, Liang X, Niu C, Wang X (2018) Ellagic acid promotes A549 cell apoptosis via regulating the phosphoinositide 3-kinase/protein kinase B pathway. Exp Ther Med. 16: 347–352. https://doi.org/10.3892/etm.2018.6193

    Article  CAS  Google Scholar 

  34. Dahiya R, Mohammad T, Gupta P, Haque A, Alajmi MF, Hussain A, Hassan MI (2019) Molecular interaction studies on ellagic acid for its anticancer potential targeting pyruvate dehydrogenase kinase 3. RSC Adv 9: 3302–23315. https://doi.org/10.1039/c9ra02864a

    Article  CAS  Google Scholar 

  35. Gupta P, Mohammad T, Khan P, Alajmi MF, Hussain A, Rehman MT, Hassan MI (2019) Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomed Pharmacother 118: 109245. https://doi.org/10.1016/j.biopha.2019.109245

    Article  CAS  Google Scholar 

  36. Ceci C, Lacal PM, Tentori L, De Martino MG, Miano R, Graziani G (2018) Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients 10: 1756. https://doi.org/10.3390/nu10111756

    Article  CAS  Google Scholar 

  37. Chen HS, Bai MH, Zhang T, Li GD, Liu M (2015) Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int J Oncol 46: 1730–1738. https://doi.org/10.3892/ijo.2015.2870

    Article  CAS  Google Scholar 

  38. Ramadan MA, Shawkey AE, Rabeh MA, Abdellatif AO (2019) Expression of P53, BAX, and BCL-2 in human malignant melanoma and squamous cell carcinoma cells after tea tree oil treatment in vitro. Cytotechnology 71: 461–473. https://doi.org/10.1007/s10616-018-0287-4

    Article  CAS  Google Scholar 

  39. Chen J (2016) The Cell-cycle arrest and apoptotic functions of p53 in tumor ınitiation and progression. Cold Spring Harb Perspect Med 6: a026104. https://doi.org/10.1101/cshperspect.a026104

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Concept: Songül Ünüvar, Neşe Başak Türkmen, Hande Yüce; Design: Songül Ünüvar, Neşe Başak Türkmen, Dilan Aşkın Özek; Materials: Neşe Başak Türkmen, HandeYüce; Analysis and/or interpretation: Yasemin Şahin, Osman Çiftçi; Literature review: Songül Ünüvar, Neşe Başak Türkmen, Hande Yüce; Writing the article: Songül Ünüvar, Hande Yüce.

Corresponding author

Correspondence to S. Ünüvar.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yüce, H., Şahin, Y., Türkmen, N.B. et al. Apoptotic, Cytotoxic and Antimigratory Activities of Phenolic Compounds. J Evol Biochem Phys 58, 1819–1833 (2022). https://doi.org/10.1134/S0022093022060138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022060138

Keywords:

Navigation