Skip to main content
Log in

Effect of the Nitric Oxide Donor S-Nitrosoglutathione on Expression of the Constitutive Androstane Receptor

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The mechanisms of regulation of the constitutive androstane receptor (CAR) under the effect of the nitric oxide (NO) donor S-nitrosoglutathione (GSNO), added to a nutrient medium at concentrations ranging from 1 to 500 µM for 3, 24, and 72 h, were studied in vitro on Caco-2 cells. Relative CAR levels were assessed by Western blotting. It was found that short-term (3 and 24 h) exposure to GSNO at concentrations of 1–500 µM did not affect the relative CAR level, while after a 72-h exposure to GSNO concentrations of 1, 10 and 50 µM, it increased. Such an increase in the relative CAR level upon exposure to a low GSNO concentration (1 µM) was proved to be implemented via the NO-cGMP signaling pathway. Further increase in GSNO concentrations to 10 and 50 µM triggered the development of nitrosative stress, and the relative CAR level was regulated via the nitration product bityrosine. Nitrosative stress progression at GSNO concentrations of 100 and 500 µM was accompanied by a decline in Caco-2 cell survival, apparently due to the damage to the CAR molecule, leading to a decrease in the relative CAR level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kachaylo EM, Pustylnyak VO, Lyakhovich VV, Gulyaeva LF (2011) Constitutive androstane receptor (CAR) is a xenosensor and target for therapy. Biochemistry (Mosc) 76(10): 1087–1097. https://doi.org/10.1134/S0006297911100026

  2. Qatanani M, Moore DD (2005) CAR, the continuously advancing receptor, in drug metabolism and disease. Current Drug Metabolism 6(4): 329–339. https://doi.org/10.2174/1389200054633899

    Article  CAS  PubMed  Google Scholar 

  3. Timsit YE, Negishi M (2007) CAR and PXR: the xenobiotic-sensing receptors. Steroids 72: 231–246. https://doi.org/10.1016/j.steroids.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Nishimura M, Naito S, Yokoi T (2004) Tissue-specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab Pharmacokinet 19(2): 135–149. https://doi.org/10.2133/dmpk.19.135

    Article  CAS  PubMed  Google Scholar 

  5. Timsit YE, Negishi M (2014) Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One 9(5): e96092. https://doi.org/10.1371/journal.pone.0096092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kakizaki S, Yamamoto Y, Ueda A, Moore R, Sueyoshi T, Negishi M (2003) Phenobarbital induction of drug/steroid-metabolizing enzymes and nuclear receptor CAR. Biochim Biophys Acta 1619(3): 239–242. https://doi.org/10.1016/s0304-4165(02)00482-8

    Article  CAS  PubMed  Google Scholar 

  7. He L, Wu J, Tang W, Zhou X, Lin Q, Luo F, Yin Y, Li T (2018) Prevention of oxidative stress by α-ketoglutarate via activation of car signaling and modulation of the expression of key antioxidant-associated targets in vivo and in vitro. J Agric Food Chem 66(43): 11273–11283. https://doi.org/10.1021/acs.jafc.8b04470

    Article  CAS  PubMed  Google Scholar 

  8. Yang H, Wang H (2014) Signaling control of the constitutive androstane receptor (CAR). Protein Cell 5(2): 113–123. https://doi.org/10.1007/s13238-013-0013-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lynch C, Pan Y, Li L, Heyward S, Moeller T, Swaan PW, Wang H (2014) Activation of the constitutive androstane receptor inhibits gluconeogenesis without affecting lipogenesis or fatty acid synthesis in human hepatocytes. Toxicol Appl Pharmacol 279(1): 33–42. https://doi.org/10.1016/j.taap.2014.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abalenikhina YV, Kosmachevskaya OV, Topunov AF (2020) Peroxynitrite: toxic agent and signaling molecule (review). Appl Biochem Microbiol 56: 611–623. https://doi.org/10.1134/S0003683820060022

    Article  CAS  Google Scholar 

  11. Araki S, Osuka K, Takata T, Tsuchiya Y, Watanabe Y (2020) Coordination between calcium/calmodulin-dependent protein kinase II and neuronal nitric oxide synthase in neurons. Int J Mol Sci 21: 7997. https://doi.org/10.3390/ijms21217997

    Article  CAS  PubMed Central  Google Scholar 

  12. Browning DD, McShane MP, Marty C, Ye RD (2000) Nitric oxide activation of p38 mitogen-activated protein kinase in 293T fibroblasts requires cGMP-dependent protein kinase. J Biol Chem 275(4): 2811–2816. https://doi.org/10.1074/jbc.275.4.2811

    Article  CAS  PubMed  Google Scholar 

  13. Bladowski M, Gawrys J, Gajecki D, Szahidewicz-Krupska E, Sawicz-Bladowska A, Doroszko A (2020) Role of the platelets and nitric oxide biotransformation in ischemic stroke: a translative review from bench to bedside. Oxid Med Cell Longev 28: 2979260. https://doi.org/10.1155/2020/2979260

    Article  CAS  Google Scholar 

  14. Saini R, Azam Z, Sapra L, Srivastava RK (2021) Neuronal nitric oxide synthase (nNOS) in neutrophils: an insight. Rev Physiol Biochem Pharmacol 180: 49–83. https://doi.org/10.1007/112_2021_61

    Article  PubMed  Google Scholar 

  15. Zweier JL, Ilangovan G (2020) Regulation of nitric oxide metabolism and vascular tone by cytoglobin. Antioxid Redox Signal 32(16): 1172–1187. https://doi.org/10.1089/ars.2019.7881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Antosova M, Mokra D, Pepucha L, Plevkova J, Buday T, Sterusky M, Bencova A (2017) Physiology of nitric oxide in the respiratory system. Physiol Res 66 (Suppl 2): 159–172. https://doi.org/10.33549/physiolres.933673

    Article  Google Scholar 

  17. Sanders KM, Ward SM (2019) Nitric oxide and its role as a non-adrenergic, non-cholinergic inhibitory neurotransmitter in the gastrointestinal tract. Br J Pharmacol 176(2): 212–227. https://doi.org/10.1111/bph.14459

    Article  CAS  PubMed  Google Scholar 

  18. Ahmad A, Dempsey SK, Daneva Z, Azam M, Li N, Li PL, Ritter JK (2018) Role of nitric oxide in the cardiovascular and renal systems. Int J Mol Sci 19(9): 2605. https://doi.org/10.3390/ijms19092605

    Article  CAS  PubMed Central  Google Scholar 

  19. Garthwaite J (2019) NO as a multimodal transmitter in the brain: discovery and current status. Br J Pharmacol 176(2): 197–211. https://doi.org/10.1111/bph.14532

    Article  CAS  PubMed  Google Scholar 

  20. Mazurek M, Rola R (2021) The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 150: 105172. https://doi.org/10.1016/j.neuint.2021.105172

    Article  CAS  PubMed  Google Scholar 

  21. Lancaster JR (2015) Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications. Future Sci OA 1(1): FSO59. https://doi.org/10.4155/fso.15.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gumanova NG (2021) Nitrogen oxide and its circulating NOх metabolites, their role in human body functioning and cardiovascular death risk prediction (Part II). Russ J Preventiv Med 24(10): 199–125. https://doi.org/10.17116/profmed202124101119

    Article  Google Scholar 

  23. Koseki K, Yamamoto A, Tanimoto K, Okamoto N, Teng F, Bito T, Yabuta Y, Kawano T, Watanabe F (2021) Dityrosine crosslinking of collagen and amyloid-β peptides is formed by vitamin B12 deficiency-generated oxidative stress in Caenorhabditis elegans. Int J Mol Sci 22(23): 12959. https://doi.org/10.3390/ijms222312959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li AP (2020) In vitro human cell-based experimental models for the evaluation of enteric metabolism and drug interaction potential of drugs and natural products. Drug Metab Dispos 48(10): 980–992. https://doi.org/10.1124/dmd.120.000053

    Article  CAS  PubMed  Google Scholar 

  25. Hwang TL, Wu CC, Teng CM (1998) Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea. Br J Pharmacol 125(6): 1158–1163. https://doi.org/10.1038/sj.bjp.0702181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Metelskaya VA, Gumanova NG (2005) Screening method for determining the level of nitric oxide metabolites in human serum. Clin Lab Diagnost 6: 15–18. (In Russ).

    Google Scholar 

  27. Lobysheva II, Serezhenkov VA, Vanin AF (1999) Interaction of dinitrosyl thiol-containing iron complexes with peroxynitrite and hydrogen peroxide in vitro. Biochemistry 64(2): 194–200. (In Russ).

    Google Scholar 

  28. Amado R, Aeschbach R, Neukom H (1984) Dytirosine: in vitro production and characterization. Methods Enzymol 107: 377–388. https://doi.org/10.1016/0076-6879(84)07026-9

    Article  CAS  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analyt Biochem 72: 248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

  30. Tolosa L, Donato MT, Gómez-Lechón MJ (2015) General cytotoxicity assessment by means of the MTT assay. Methods Mol Biol 1250: 333–348. https://doi.org/10.1007/978-1-4939-2074-7_26

    Article  CAS  PubMed  Google Scholar 

  31. Abalenikhina YV, Sudakova EA, Seidkulieva AA, Shchulkin AV, Yakusheva EN (2021) Functioning of pregnan X receptor under conditions of nitrosative stress. Biomed Khim 67(5): 394–401. https://doi.org/10.18097/PBMC20216705394

    Article  CAS  PubMed  Google Scholar 

  32. Rizza S, Giglio P, Faienza F, Filomeni G (2019) Therapeutic application of nitric oxide in cancer and inflammatory disorders. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816545-4.00009-8

    Book  Google Scholar 

  33. Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B (2001) Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci USA 98(17): 9539–9544. https://doi.org/10.1073/pnas.171180998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramachandran N, Root P, Jiang XM, Hogg PJ, Mutus B (2001) Mechanism of transfer of NO from extracellular S-nitrosothiols into the cytosol by cell-surface protein disulfide isomerase. Proc Natl Acad Sci USA 98: 9539-9544. https://doi.org/10.1073/pnas.171180998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Sun C, Xiao G, Shan H, Tang L, Yi Y, Yu W, Gu Y (2019). S-nitrosylation of the Peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway. Cell Death Dis 10(5): 329. https://doi.org/10.1038/s41419-019-1561-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim J, Islam SMT, Qiao F, Singh AK, Khan M, Won J, Singh I (2021) Regulation of B cell functions by S-nitrosoglutathione in the EAE model. Redox Biol 45: 102053. https://doi.org/10.1016/j.redox.2021.102053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mussbacher M, Stessel H, Pirker T, Gorren ACF, Mayer B, Schrammel A (2019) S-nitrosoglutathione inhibits adipogenesis in 3T3-L1 preadipocytes by S-nitrosation of CCAAT/enhancer-binding protein β. Sci Rep 9(1): 15403. https://doi.org/10.1038/s41598-019-51579-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen T, Chen Q, Xu Y, Zhou Q, Zhu J, Zhang H, Wu Q, Xu J, Yu C (2011) SRC-3 is required for CAR-regulated hepatocyte proliferation and drug metabolism. J Hepatol 56(1): 210–217. https://doi.org/10.1016/j.jhep.2011.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Suino K, Peng L, Reynolds R, Li Y, Cha JY, Repa JJ, Kliewer SA, Xu HE (2004) The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell 16(6): 893–905. https://doi.org/10.1016/j.molcel.2004.11.036

    Article  CAS  PubMed  Google Scholar 

  40. Yoshinari K, Kobayashi K, Moore R, Kawamoto T, Negishi M (2003) Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Letters 548(1–3): 17–20. https://doi.org/10.1016/s0014-5793(03)00720-8

    Article  CAS  PubMed  Google Scholar 

  41. Kanno Y, Miyama Y, Ando M, Inouye Y (2010) Dependence on the microtubule network and 90-kDa heat shock protein of phenobarbital-induced nuclear translocation of the rat constitutive androstane receptor. Mol Pharmacol 77(2): 311–316. https://doi.org/10.1124/mol.109.060434

    Article  CAS  PubMed  Google Scholar 

  42. Chen T, Laurenzana EM, Coslo DM, Chen F, Omiecinski CJ (2014) Proteasomal interaction as a critical activity modulator of the human constitutive androstane receptor. Biochem J 458(1): 95–107. https://doi.org/10.1042/BJ20130685K

    Article  CAS  PubMed  Google Scholar 

  43. Scopino K, Dalgarno C, Nachmanoff C, Krizanc D, Thayer KM, Weir MP (2021) Arginine methylation regulates ribosome CAR function. Int J Mol Sci 22(3): 1335. https://doi.org/10.3390/ijms22031335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tejero J, Shiva S, Gladwin MT (2019) Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol Rev 99(1): 311–379. https://doi.org/10.1152/physrev.00036.2017

    Article  CAS  PubMed  Google Scholar 

  45. Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R (2018) Biochemistry of peroxynitrite and protein tyrosine nitration. Chem Rev 118(3): 1338–1408. https://doi.org/10.1021/acs.chemrev.7b0056846

    Article  CAS  PubMed  Google Scholar 

  46. Boer TR, Palomino RI, Mascharak PK (2019) Peroxynitrite-mediated dimerization of 3-nitrotyrosine: unique chemistry along the spectrum of peroxynitrite-mediated nitration of tyrosine. Med One 4: e190003. https://doi.org/10.20900/mo.20190003

    Article  Google Scholar 

  47. Koseki K, Yamamoto A, Tanimoto K, Okamoto N, Teng F, Bito T, Yabuta Y, Kawano T, Watanabe F (2021) Dityrosine crosslinking of collagen and amyloid-β peptides is formed by vitamin B12 deficiency-generated oxidative stress in Caenorhabditis elegans. Int J Mol Sci 22(23): 12959. https://doi.org/10.3390/ijms222312959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu Y, Ma S, Tang X, Li B, Ge Y, Zhang K, Yang S, Zhao Q, Xu Y, Ren H (2020) Dietary Dityrosine Induces Mitochondrial Dysfunction by Diminished Thyroid Hormone Function in Mouse Myocardia. J Agric Food Chem 68(34): 9223–9234. https://doi.org/10.1021/acs.jafc.0c03926

    Article  CAS  PubMed  Google Scholar 

  49. Mathäs M, Nusshag C, Burk O, Gödtel-Armbrust U, Herlyn H, Wojnowski L, Windshügel B (2014) Structural and functional similarity of amphibian constitutive androstane receptor with mammalian pregnane X receptor. PloS One 9(5): e96263. https://doi.org/10.1371/journal.pone.0096263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the grant of the President of the Russian Federation (MK-1856.2020.7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (A.V.S., Yu.V.A.); data collection (A.V.S., Yu.V.A., E.A.S., A.A.S.); data processing (A.V.S., Yu.V.A., E.A.S., A.A.S.); writing and editing the manuscript (A.V.S., Yu.V.A., E.N.Ya.).

Corresponding author

Correspondence to Yu. V. Abalenikhina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2022, Vol. 58, No. 5, pp. 412–422https://doi.org/10.31857/S0044452922050023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abalenikhina, Y.V., Sudakova, E.A., Seidkuliyeva, А.А. et al. Effect of the Nitric Oxide Donor S-Nitrosoglutathione on Expression of the Constitutive Androstane Receptor. J Evol Biochem Phys 58, 1341–1352 (2022). https://doi.org/10.1134/S0022093022050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050064

Keywords:

Navigation