Skip to main content
Log in

Effect of Anakinra on the Gene Expression of Receptors Activated by the Peroxisome Proliferator in the Rat Brain in the Lithium Pilocarpine Model of Epilepsy

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2022

This article has been updated

Abstract

The role of neuroinflammation in the mechanisms of epileptogenesis has been widely discussed in recent years. One of the factors influencing inflammatory processes in the brain may be changes in the expression of nuclear transcription factors, in particular peroxisome proliferator-activated receptors (PPARs). Agonists of these receptors have a pronounced neuroprotective effect in epilepsy models. Studies carried out on cells of various body tissues reveal a close functional relationship that exists between the genes of Ppars, the proinflammatory cytokine interleukin-1 (IL-1β) and the anti-inflammatory cytokine interleukin 1 receptor antagonist (IL-1ra). This work aimed to study the peculiarities of Ppars gene expression in rat brain structures in a lithium-pilocarpine model of epilepsy and to evaluate the possible effect of IL-1ra (the drug anakinra) on these parameters. Pilocarpine was administered to Wistar rats at 7–8 weeks of age, one day after LiCl injections. Anakinra was administered for one week after pilocarpine (the first injection of 100 µg/kg one hour after convulsions, then for 5 days at 100 µg/kg and 2 days at 50 µg/kg), after which brain samples were taken for biochemical analysis. Ppara, Ppard, and Pparg gene expression was assessed by reverse transcription followed by real-time polymerase chain reaction in the dorsal and ventral hippocampus, temporal cortex, and amygdala. Pilocarpine-induced seizures were shown to increase Ppard and Pparg gene expression in the ventral hippocampus and to decrease Ppara gene expression in all examined brain regions. Anakinra enhances the decrease in Ppara gene expression, has no effect on Ppard mRNA production, and levels out the increase in Pparg gene expression. Thus, Ppars gene expression in the brain changes during epileptogenesis; anakinra multidirectionally regulates Ppara and Pparg mRNA production, but has no effect on Ppard gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

REFERENCES

  1. Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, Pringsheim T, Lorenzetti DL, Jetté N (2017) Prevalence and incidence of epilepsy. Neurology 88:296–303. https://doi.org/10.1212/WNL.0000000000003509

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fattorusso A, Matricardi S, Mencaroni E, Dell’Isola GB, Di Cara G, Striano P, Verrotti A (2021) The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies. Front Neurol 12:674483. https://doi.org/10.3389/fneur.2021.674483

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sears SM, Hewett SJ (2021) Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med 246:1069–1083. https://doi.org/10.1177/1535370221989263

    Article  CAS  Google Scholar 

  4. Pracucci E, Pillai V, Lamers D, Parra R, Landi S (2021) Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 22:6981. https://doi.org/10.3390/ijms22136981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA (2013) Glia and epilepsy: excitability and inflammation. Trends Neurosci 36:174–184. https://doi.org/10.1016/j.tins.2012.11.008

    Article  CAS  PubMed  Google Scholar 

  6. Vezzani A, Balosso S, Ravizza T (2008) The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 22:797–803. https://doi.org/10.1016/j.bbi.2008.03.009

    Article  CAS  PubMed  Google Scholar 

  7. Dyomina AV, Zubareva OE, Smolensky IV, Vasilev DS, Zakharova MV, Kovalenko AA, Schwarz AP, Ischenko AM, Zaitsev AV (2020) Anakinra Reduces Epileptogenesis, Provides Neuroprotection, and Attenuates Behavioral Impairments in Rats in the Lithium–Pilocarpine Model of Epilepsy. Pharmaceuticals 13:340. https://doi.org/10.3390/ph13110340

    Article  CAS  PubMed Central  Google Scholar 

  8. Mazarati AM, Pineda E, Shin D, Tio D, Taylor AN, Sankar R (2010) Comorbidity between epilepsy and depression: Role of hippocampal interleukin-1β. Neurobiol Dis 37:461–467. https://doi.org/10.1016/j.nbd.2009.11.001

    Article  CAS  PubMed  Google Scholar 

  9. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, Janigro D (2009) Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiol Dis 33:171–181. https://doi.org/10.1016/j.nbd.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  10. Korbecki J, Bobiński R, Dutka M (2019) Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res 68:443–458. https://doi.org/10.1007/s00011-019-01231-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zolezzi JM, Santos MJ, Bastías-Candia S, Pinto C, Godoy JA, Inestrosa NC (2017) PPARs in the central nervous system: roles in neurodegeneration and neuroinflammation. Biol Rev 92:2046–2069. https://doi.org/10.1111/brv.12320

    Article  PubMed  Google Scholar 

  12. Hong F, Pan S, Guo Y, Xu P, Zhai Y (2019) PPARs as Nuclear Receptors for Nutrient and Energy Metabolism. Molecules 24:2545. https://doi.org/10.3390/molecules24142545

    Article  CAS  PubMed Central  Google Scholar 

  13. Fidaleo M, Fanelli F, Ceru M, Moreno S (2014) Neuroprotective Properties of Peroxisome Proliferator-Activated Receptor Alpha (PPARα) and its Lipid Ligands. Curr Med Chem 21:2803–2821. https://doi.org/10.2174/0929867321666140303143455

    Article  CAS  PubMed  Google Scholar 

  14. Heneka M, Landreth G (2007) PPARs in the brain. Biochim Biophys Acta—Mol Cell Biol Lipids 1771:1031–1045. https://doi.org/10.1016/j.bbalip.2007.04.016

    Article  CAS  Google Scholar 

  15. Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J 13:17. https://doi.org/10.1186/1475-2891-13-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Blanquart C, Barbier O, Fruchart JC, Staels B, Glineur C (2003) Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. J Steroid Biochem Mol Biol 85:267–273. https://doi.org/10.1016/S0960-0760(03)00214-0

    Article  CAS  PubMed  Google Scholar 

  17. Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB (2021) Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. NeuroMolecular Med 23:86–98. https://doi.org/10.1007/s12017-020-08629-9

    Article  CAS  PubMed  Google Scholar 

  18. Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Ning B, YongNan L (2013) The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 63:405–412. https://doi.org/10.1016/j.neuint.2013.07.010

    Article  CAS  PubMed  Google Scholar 

  19. Sun H, Huang Y, Yu X, Li Y, Yang J, Li R, Deng Y, Zhao G (2008) Peroxisome proliferator-activated receptor gamma agonist, rosiglitazone, suppresses CD40 expression and attenuates inflammatory responses after lithium pilocarpine-induced status epilepticus in rats. Int J Dev Neurosci 26:505–515. https://doi.org/10.1016/j.ijdevneu.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  20. Porta N, Vallée L, Lecointe C, Bouchaert E, Staels B, Bordet R, Auvin S (2009) Fenofibrate, a peroxisome proliferator-activated receptor-α agonist, exerts anticonvulsive properties. Epilepsia 50(4):943-948. https://doi.org/10.1111/j.1528-1167.2008.01901.x

    Article  CAS  PubMed  Google Scholar 

  21. Wong S-B, Cheng S-J, Hung W-C, Lee W-T, Min M-Y (2015) Rosiglitazone Suppresses In Vitro Seizures in Hippocampal Slice by Inhibiting Presynaptic Glutamate Release in a Model of Temporal Lobe Epilepsy. PLoS One 10:e0144806. https://doi.org/10.1371/journal.pone.0144806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. O’Léime CS, Cryan JF, Nolan YM (2017) Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis. Brain Behav Immun 66:394–412. https://doi.org/10.1016/j.bbi.2017.07.153

    Article  CAS  PubMed  Google Scholar 

  23. Stienstra R, Mandard S, Tan NS, Wahli W, Trautwein C, Richardson TA, Lichtenauer-Kaligis E, Kersten S, Müller M (2007) The Interleukin-1 receptor antagonist is a direct target gene of PPARα in liver. J Hepatol 46:869–877. https://doi.org/10.1016/j.jhep.2006.11.019

    Article  CAS  PubMed  Google Scholar 

  24. Mráček T, Cannon B, Houštěk J (2004) IL-1 and LPS but not IL-6 inhibit differentiation and downregulate PPAR gamma in brown adipocytes. Cytokine 26:9–15. https://doi.org/10.1016/j.cyto.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  25. Ahmed Juvale II, Che Has AT (2020) The evolution of the pilocarpine animal model of status epilepticus. Heliyon 6:e04557. https://doi.org/10.1016/j.heliyon.2020.e04557

    Article  PubMed  PubMed Central  Google Scholar 

  26. Phelan KD, Shwe UT, Williams DK, Greenfield LJ, Zheng F (2015) Pilocarpine-induced status epilepticus in mice: A comparison of spectral analysis of electroencephalogram and behavioral grading using the Racine scale. Epilepsy Res 117:90–96. https://doi.org/10.1016/j.eplepsyres.2015.09.008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates. Elsevier.

    Google Scholar 

  28. Cernecka H, Doka G, Srankova J, Pivackova L, Malikova E, Galkova K, Kyselovic J, Krenek P, Klimas J (2016) Ramipril restores PPARβ/δ and PPARγ expressions and reduces cardiac NADPH oxidase but fails to restore cardiac function and accompanied myosin heavy chain ratio shift in severe anthracycline-induced cardiomyopathy in rat. Eur J Pharmacol 791:244–253. https://doi.org/10.1016/j.ejphar.2016.08.040

    Article  CAS  PubMed  Google Scholar 

  29. Chistyakov DV, Aleshin SE, Astakhova AA, Sergeeva MG, Reiser G (2015) Regulation of peroxisome proliferator-activated receptors (PPAR) α and γ of rat brain astrocytes in the course of activation by toll-like receptor agonists. J Neurochem 134:113–124. https://doi.org/10.1111/JNC.13101

    Article  CAS  PubMed  Google Scholar 

  30. Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA (2004) Lin. J Neurophysiol 92:2909–2919. https://doi.org/10.1152/jn.01198.2003

    Article  CAS  PubMed  Google Scholar 

  31. Swijsen A, Nelissen K, Janssen D, Rigo J-M, Hoogland G (2012) Validation of reference genes for quantitative real-time PCR studies in the dentate gyrus after experimental febrile seizures. BMC Res Notes 5:685. https://doi.org/10.1186/1756-0500-5-685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schwarz AP, Malygina DA, Kovalenko AA, Trofimov AN, Zaitsev AV (2020) Multiplex qPCR assay for assessment of reference gene expression stability in rat tissues/samples. Mol Cell Probes 53:101611. https://doi.org/10.1016/j.mcp.2020.101611

    Article  CAS  PubMed  Google Scholar 

  33. Malkin SL, Amakhin DV, Veniaminova EA, Kim KK, Zubareva OE, Magazanik LG, Zaitsev AV (2016) Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats. Neuroscience 327:146–155. https://doi.org/10.1016/j.neuroscience.2016.04.024

    Article  CAS  PubMed  Google Scholar 

  34. Cook NL, Vink R, Donkin JJ, van den Heuvel C (2009) Validation of reference genes for normalization of real-time quantitative RT-PCR data in traumatic brain injury. J Neurosci Res 87:34–41. https://doi.org/10.1002/jnr.21846

    Article  CAS  PubMed  Google Scholar 

  35. Langnaese K, John R, Schweizer H, Ebmeyer U, Keilhoff G (2008) Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol Biol 9:53. https://doi.org/10.1186/1471-2199-9-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adabi Mohazab R, Javadi-Paydar M, Delfan B, Dehpour AR (2012) Possible involvement of PPAR-gamma receptor and nitric oxide pathway in the anticonvulsant effect of acute pioglitazone on pentylenetetrazole-induced seizures in mice. Epilepsy Res 101:28–35. https://doi.org/10.1016/j.eplepsyres.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  37. Saha L, Bhandari S, Bhatia A, Banerjee D, Chakrabarti A (2014) Anti-kindling Effect of Bezafibrate, a Peroxisome Proliferator-activated Receptors Alpha Agonist, in Pentylenetetrazole Induced Kindling Seizure Model. J Epilepsy Res 4:45–54. https://doi.org/10.14581/jer.14011

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB (2020) The Novel Role of PPAR Alpha in the Brain: Promising Target in Therapy of Alzheimer’s Disease and Other Neurodegenerative Disorders. Neurochem Res 45:972–988. https://doi.org/10.1007/s11064-020-02993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, Rosengarth A, Luecke H, Di Giacomo B, Tarzia G, Piomelli D (2003) Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature 425:90–93. https://doi.org/10.1038/nature01921

    Article  CAS  PubMed  Google Scholar 

  40. Sihag J, Jones PJH (2018) Oleoylethanolamide: The role of a bioactive lipid amide in modulating eating behaviour. Obes Rev 19:178–197. https://doi.org/10.1111/obr.12630

    Article  CAS  PubMed  Google Scholar 

  41. Pan W, Liu C, Zhang J, Gao X, Yu S, Tan H, Yu J, Qian D, Li J, Bian S, Yang J, Zhang C, Huang L, Jin J (2019) Association Between Single Nucleotide Polymorphisms in PPARA and EPAS1 Genes and High-Altitude Appetite Loss in Chinese Young Men. Front Physiol 10:59. https://doi.org/10.3389/fphys.2019.00059

    Article  PubMed  PubMed Central  Google Scholar 

  42. Curia G, Longo D, Biagini G, Jones RSG, Avoli M (2008) The pilocarpine model of temporal lobe epilepsy. J Neurosci Methods 172:143–157. https://doi.org/10.1016/j.jneumeth.2008.04.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carta AR (2013) PPARγ: Therapeutic Prospects in Parkinson’s Disease. Curr Drug Targets 14:743–751. https://doi.org/10.2174/1389450111314070004

    Article  CAS  PubMed  Google Scholar 

  44. Chang KL, Wong LR, Pee HN, Yang S, Ho PC-L (2019) Reverting Metabolic Dysfunction in Cortex and Cerebellum of APP/PS1 Mice, a Model for Alzheimer’s Disease by Pioglitazone, a Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Agonist. Mol Neurobiol 56:7267–7283. https://doi.org/10.1007/s12035-019-1586-2

    Article  CAS  PubMed  Google Scholar 

  45. Ormerod BK, Hanft SJ, Asokan A, Haditsch U, Lee SW, Palmer TD (2013) PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness. Brain Behav Immun 29:28–38. https://doi.org/10.1016/j.bbi.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  46. Peng J, Wang K, Xiang W, Li Y, Hao Y, Guan Y (2019) Rosiglitazone polarizes microglia and protects against pilocarpine-induced status epilepticus. CNS Neurosci Ther 25:1363–1372. https://doi.org/10.1111/cns.13265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hong S, Xin Y, HaiQin W, GuiLian Z, Ru Z, ShuQin Z, HuQing W, Li Y, Yun D (2012) The PPARγ agonist rosiglitazone prevents cognitive impairment by inhibiting astrocyte activation and oxidative stress following pilocarpine-induced status epilepticus. Neurol Sci 33:559–566. https://doi.org/10.1007/s10072-011-0774-2

    Article  PubMed  Google Scholar 

  48. Prashantha Kumar BR, Kumar AP, Jose JA, Prabitha P, Yuvaraj S, Chipurupalli S, Jeyarani V, Manisha C, Banerjee S, Jeyabalan JB, Mohankumar SK, Dhanabal SP, Justin A (2020) Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int 140:104814. https://doi.org/10.1016/j.neuint.2020.104814

    Article  CAS  PubMed  Google Scholar 

  49. Inestrosa N, Godoy J, Quintanilla R, Koenig C, Bronfman M (2005) Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104. https://doi.org/10.1016/j.yexcr.2004.09.032

    Article  CAS  PubMed  Google Scholar 

  50. Cai W, Yang T, Liu H, Han L, Zhang K, Hu X, Zhang X, Yin K-J, Gao Y, Bennett MVL, Leak RK, Chen J (2018) Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog Neurobiol 163:27–58. https://doi.org/10.1016/j.pneurobio.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  51. Wu J-S, Tsai H-D, Cheung W-M, Hsu CY, Lin T-N (2016) PPAR-γ Ameliorates Neuronal Apoptosis and Ischemic Brain Injury via Suppressing NF-κB-Driven p22phox Transcription. Mol Neurobiol 53:3626–3645. https://doi.org/10.1007/s12035-015-9294-z

    Article  CAS  PubMed  Google Scholar 

  52. Bernardo A, Minghetti L (2006) PPAR-gamma agonists as Regulators of Microglial Activation and Brain Inflammation. Curr Pharm Des 12:93–109. https://doi.org/10.2174/138161206780574579

    Article  CAS  PubMed  Google Scholar 

  53. Ji H, Wang H, Zhang F, Li X, Xiang L, Aiguo S (2010) PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflamm Res 59:921–929. https://doi.org/10.1007/s00011-010-0203-7

    Article  CAS  PubMed  Google Scholar 

  54. Arsenijevic D, de Bilbao F, Plamondon J, Paradis E, Vallet P, Richard D, Langhans W, Giannakopoulos P (2006) Increased Infarct Size and Lack of Hyperphagic Response after Focal Cerebral Ischemia in Peroxisome Proliferator-Activated Receptor β-Deficient Mice. J Cereb Blood Flow Metab 26:433–445. https://doi.org/10.1038/sj.jcbfm.9600200

    Article  CAS  PubMed  Google Scholar 

  55. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, Lu Y, Wang X, Liang J, Zhang X (2020) Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res 45:837–850. https://doi.org/10.1007/s11064-020-02956-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Borges K (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182:21–34. https://doi.org/10.1016/S0014-4886(03)00086-4

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Supported by RFBR, Grant no. 20-515-00020 and BRFFI, Grant no. M20R-328.

Author information

Authors and Affiliations

Authors

Contributions

Idea of work and planning of—O.E.Z., T.B.M.-K., article writing and editing—A.I.R., O.E.Z., T.B.M.-K., A.A.K., A.V.D.—data collection and processing—A.V.D., A.A.K., M.V.Z., A.P.S.

Corresponding author

Correspondence to O. E. Zubareva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Dyomina

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 4, pp. 490–504https://doi.org/10.31857/S0869813922040070.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roginskaya, A.I., Dyomina, A.V., Kovalenko, A.A. et al. Effect of Anakinra on the Gene Expression of Receptors Activated by the Peroxisome Proliferator in the Rat Brain in the Lithium Pilocarpine Model of Epilepsy. J Evol Biochem Phys 58, 598–609 (2022). https://doi.org/10.1134/S0022093022020260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022020260

Keywords:

Navigation