Skip to main content
Log in

Amygdalofugal Modulation of Visceral Nociceptive Transmission in the Rat Caudal Ventrolateral Medulla under Normal Conditions and Intestinal Inflammation

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

The amygdala is one of the key limbic structures of the brain that provide central regulation of the autonomic nervous system. The central nucleus of the amygdala (CeA) is thought to play a leading role in the emotional and affective state-dependent assessment and modulation of viscerosensory information entering the brain, including nociceptive signals from the gastrointestinal tract. The recent data on neuroplastic changes in the CeA under colonic inflammation indicate that peripheral pathology can influence the amygdaloid control of visceral pain signaling. However, the specific mechanisms underlying such a control, as well as their alterations in organic diseases, remain poorly understood, hindering the development of effective abdominal pain treatments. The goal of the present neurophysiological experiments on anesthetized rats was to determine the neuronal mechanisms ensuring amygdalofugal modulation of the medullary visceral nociceptive transmission and to evaluate the features of their implementation during intestinal inflammation. For this purpose, the effects of electrical stimulation of the CeA on nociceptive colorectal distension (CRD)-evoked spike activity of neurons in the caudal ventrolateral medulla (CVLM) were studied in healthy animals and rats with experimental colitis. It was found that the CeA exerts a suppressive effect on the CVLM neural processing of nociceptive signals from the colon, as manifested in a decrease in excitatory and a weakening of inhibitory responses of medullary neurons to CRD. Since the observed effect may contribute to the attenuation of the ascending flow of nociceptive information and pain-triggered reflectory reactions implemented at the medullary level, it can be considered as antinociceptive. It was established that colitis is accompanied by a decrease in the inhibitory influence of the CeA on CRD-excited CVLM neurons while retaining the amygdalofugal suppression of inhibitory nociceptive neuronal responses. The revealed changes can lead to an enhancement of the supraspinal transmission of pain signals from the colon, i.e. underlie the central pathogenetic mechanisms of intestinal hyperalgesia and chronic abdominal pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ljubashina OA, Panteleev SS, Nozdrachev AD (2009) Amygdalofugal modulation of the autonomic centers of the brain. Nauka, SPb (In Russ).

    Google Scholar 

  2. Benarroch EE (2012) Central autonomic control. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR (eds) Primer on the autonomic nervous system, 3rd ed. Elsevier, Amsterdam. 9–12. https://doi.org/10.1016/B978-0-12-386525-0.00002-0

    Chapter  Google Scholar 

  3. Pitkänen A (2000) Connectivity of the rat amygdaloid complex. In: Aggleton JP (ed) The amygdala: a functional analysis. Oxford Univer Press, New York 31–115.

    Google Scholar 

  4. Browning KN, Travagli RA (2014) Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 4(4):1339–1368. https://doi.org/10.1002/cphy.c130055

    Article  PubMed  PubMed Central  Google Scholar 

  5. Critchley HD, Harrison NA (2013) Visceral influences on brain and behavior. Neuron 77(4):624–638. https://doi.org/10.1016/j.neuron.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  6. Meerveld BG, Johnson AC (2018) Mechanisms of stress-induced visceral pain. J Neurogastroenterol Motil 24(1):7–18. https://doi.org/10.5056/jnm17137

    Article  PubMed  Google Scholar 

  7. Bonaz B, Baciu M, Papillon E, Bost R, Gueddah N, Le Bas JF, Fournet J, Segebarth C (2002) Central processing of rectal pain in patients with irritable bowel syndrome: an fMRI study. Am J Gastroenterol 97(3):654–661. https://doi.org/10.1111/j.1572-0241.2002.05545.x

    Article  CAS  PubMed  Google Scholar 

  8. Rubio A, Pellissier S, Van Oudenhove L, Ly HG, Dupont P, Tack J, Dantzer C, Delon-Martin C, Bonaz B (2016) Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn’s disease—a fMRI study. Neurogastroenterol Motil 28(9):1419–1432. https://doi.org/10.1111/nmo.12844

    Article  CAS  PubMed  Google Scholar 

  9. Lazovic J, Wrzos HF, Yang QX, Collins CM, Smith MB, Norgren R, Matyas K, Ouyang A (2005) Regional activation in the rat brain during visceral stimulation detected by c-fos expression and fMRI. Neurogastroenterol Motil 17(4):548–556. https://doi.org/10.1111/j.1365-2982.2005.00655.x

    Article  CAS  PubMed  Google Scholar 

  10. Nakagawa T, Katsuya A, Tanimoto S, Yamamoto J, Yamauchi Y, Minami M, Satoh M (2003) Differential patterns of c-fos mRNA expression in the amygdaloid nuclei induced by chemical somatic and visceral noxious stimuli in rats. Neurosci Lett 344(3):197–200. https://doi.org/10.1016/S0304-3940(03)00465-8

    Article  CAS  PubMed  Google Scholar 

  11. Crock LW, Kolber BJ, Morgan CD, Sadler KE, Vogt SK, Bruchas MR, Gereau RW (2012) Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 32(41):14217–14226. https://doi.org/10.1523/JNEUROSCI.1473-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prusator DK, Greenwood-Van Meerveld B (2017) Amygdala-mediated mechanisms regulate visceral hypersensitivity in adult females following early life stress: importance of the glucocorticoid receptor and corticotropin-releasing factor. Pain 158(2):296–305. https://doi.org/10.1097/j.pain.0000000000000759

    Article  CAS  PubMed  Google Scholar 

  13. Su J, Tanaka Y, Muratsubaki T, Kano M, Kanazawa M, Fukudo S (2015) Injection of corticotropin-releasing hormone into the amygdala aggravates visceral nociception and induces noradrenaline release in rats. Neurogastroenterol Motil 27(1):30–39. https://doi.org/10.1111/nmo.12462

    Article  CAS  PubMed  Google Scholar 

  14. Johnson AC, Tran L, Greenwood-Van Meerveld B (2015) Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Transl Psychiatry 5(3):e517. https://doi.org/10.1038/tp.2015.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taché Y (2015) Corticotrophin-releasing factor 1 activation in the central amygdale and visceral hyperalgesia. Neurogastroenterol Motil 27(1):1–6. https://doi.org/10.1111/nmo.12495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bao CH, Liu P, Liu HR, Wu LY, Shi Y, Chen WF, Qin W, Lu Y, Zhang JY, Jin XM, Wang XM, Zhao JM, Liu XM, Tian J, Wu HG (2015) Alterations in brain grey matter structures in patients with crohn’s disease and their correlation with psychological distress. J Crohns Colitis 9(7):532–540. https://doi.org/10.1093/ecco-jcc/jjv057

    Article  PubMed  Google Scholar 

  17. Jarcho JM, Feier NA, Bert A, Labus JA, Lee M, Stains J, Ebrat B, Groman SM, Tillisch K, Brody AL, London ED, Mandelkern MA, Mayer EA (2013) Diminished neurokinin-1 receptor availability in patients with two forms of chronic visceral pain. Pain 154(7):987–996. https://doi.org/10.1016/j.pain.2013.02.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nair VA, Beniwal-Patel P, Mbah I, Young BM, Prabhakaran V, Saha S (2016) Structural imaging changes and behavioral correlates in patients with Crohn’s disease in remission. Front Hum Neurosci 10:460. https://doi.org/10.3389/fnhum.2016.00460

    Article  PubMed  PubMed Central  Google Scholar 

  19. Agostini A, Filippini N, Benuzzi F, Bertani A, Scarcelli A, Leoni C, Farinelli V, Riso D, Tambasco R, Calabrese C, Rizzello F, Gionchetti P, Ercolani M, Nichelli P, Campieri M (2013) Functional magnetic resonance imaging study reveals differences in the habituation to psychological stress in patients with Crohn's disease versus healthy controls. J Behav Med 36(5):477–487. https://doi.org/10.1007/s10865-012-9441-1

    Article  PubMed  Google Scholar 

  20. Jain P, Hassan AM, Koyani CN, Mayerhofer R, Reichmann F, Farzi A, Schuligoi R, Malle E, Holzer P (2015) Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress. Front Behav Neurosci 9:177. https://doi.org/10.3389/fnbeh.2015.00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ji G, Li Z, Neugebauer V (2015) Reactive oxygen species mediate visceral pain-related amygdala plasticity and behaviors. Pain 156(5):825–836. https://doi.org/10.1097/j.pain.0000000000000120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reichmann F, Painsipp E, Holzer P (2013) Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system. PLoS One 8(1):e54811. https://doi.org/10.1371/journal.pone.0054811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Greenwood-Van Meerveld B, Johnson AC, Schulkin J, Myers DA (2006) Long-term expression of corticotropin-releasing factor (CRF) in the paraventricular nucleus of the hypothalamus in response to an acute colonic inflammation. Brain Res 1071(1):91–96. https://doi.org/10.1016/j.brainres.2005.11.071

    Article  CAS  PubMed  Google Scholar 

  24. Reichmann F, Hassan A, Farzi A, Jain P, Schuligoi R, Holzer P (2015) Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Sci Rep 5:9970. https://doi.org/10.1038/srep09970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moshiree B, Zhou Q, Price DD, Verne GN (2006) Central sensitisation in visceral pain disorders. Gut 55(7):905–958. https://doi.org/10.1136/gut.2005.078287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Siegel CA, MacDermott RP (2009) Is chronic pain an extraintestinal manifestation of IBD? Inflammatory Bowel Diseases 15(5):769–771. https://doi.org/10.1002/ibd.20844

    Article  PubMed  Google Scholar 

  27. Al-Chaer ED, Willis WD (2007) Neuroanatomy of visceral pain: pathways and processes. In: Pasricha PJ, Willis WD, Gebhart GF (eds) Chronic abdominal and visceral pain. Theory and practice. New York Informa Healthcare USA 33–44.

    Google Scholar 

  28. Cortelli P, Giannini G, Favoni V, Cevoli S, Pierangeli G (2013) Nociception and autonomic nervous system. Neurol Sci 34(Suppl 1):S41–S46. https://doi.org/10.1007/s10072-013-1391-z

    Article  PubMed  Google Scholar 

  29. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. 4th ed. Acad Press, London.

    Google Scholar 

  30. Neugebauer V (2015) Amygdala pain mechanisms. Handb Exp Pharmacol 227:261–284. https://doi.org/10.1007/978-3-662-46450-2_13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Veinante P, Yalcin I, Barrot M (2013) The amygdala between sensation and affect: a role in pain. J Mol Psychiatr 1(1):9. https://doi.org/10.1186/2049-9256-1-9

    Article  Google Scholar 

  32. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL (1989) Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96 (3):795–803. PMID: 2914642

    Article  CAS  Google Scholar 

  33. Martins I, Tavares I (2017). Reticular formation and pain: the past and the future. Front Neuroanat 11:51. https://doi.org/10.3389/fnana.2017.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tavares I, Lima D (2007) From neuroanatomy to gene therapy: searching for new ways to manipulate the supraspinal endogenous pain modulatory system. J Anat 211(2):261–268. https://doi.org/10.1111/j.1469-7580.2007.00759.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Robbins MT, Uzzell TW, Aly S, Ness TJ (2005) Visceral nociceptive input to the area of the medullary lateral reticular nucleus ascends in the lateral spinal cord. Neurosci Lett 381(3):329–333. https://doi.org/10.1016/j.neulet.2005.02.046

    Article  CAS  PubMed  Google Scholar 

  36. Ness TJ, Follett KA, Piper J, Dirks BA (1998) Characterization of neurons in the area of the medullary lateral reticular nucleus responsive to noxious visceral and cutaneous stimuli. Brain Res 802(1–2):163–174. https://doi.org/10.1016/s0006-8993(98)00608-8

    Article  CAS  PubMed  Google Scholar 

  37. Panteleev SS, Martseva AА, Lyubashina OА (2015) The inhibitory effect of granisetron on ventrolateral medulla neuron responses to colorectal distension in rats. Eur J Pharmacol 749:49–55. https://doi.org/10.1016/j.ejphar.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  38. Pinto-Ribeiro F, Ansah OB, Almeida A, Pertovaara A (2011) Response properties of nociceptive neurons in the caudal ventrolateral medulla (CVLM) in monoarthritic and healthy control rats: modulation of responses by the paraventricular nucleus of the hypothalamus (PVN). Brain Res Bull 86(1–2):82–90. https://doi.org/10.1016/j.brainresbull.2011.06.014

    Article  PubMed  Google Scholar 

  39. Lyubashina OA, Sivachenko IB, Panteleev SS, Nozdrachev AD (2016) Effects of 5-HT3 receptor blockade on visceral nociceptive neurons in the ventrolateral reticular field of the rat medulla oblongata. J Evol Biochem Phys 52(4):313–325. https://doi.org/10.1134/S0022093016040062

    Article  CAS  Google Scholar 

  40. Lyubashina OA, Sivachenko IB, Busygina II, Panteleev SS (2018) Colitis-induced alterations in response properties of visceral nociceptive neurons in the rat caudal medulla oblongata and their modulation by 5-HT3 receptor blockade. Brain Res Bull 142:183–196. https://doi.org/10.1016/j.brainresbull.2018.07.013

    Article  CAS  PubMed  Google Scholar 

  41. Lyubashina OA, Sivachenko IB, Sokolov AY (2019) Differential responses of neurons in the rat caudal ventrolateral medulla to visceral and somatic noxious stimuli and their alterations in colitis. Brain Res Bull 152:299–310. https://doi.org/10.1016/j.brainresbull.2019.07.030

    Article  PubMed  Google Scholar 

  42. Wang G, Tang B, Traub RJ (2005) Differential processing of noxious colonic input by thoracolumbar and lumbosacral dorsal horn neurons in the rat. J Neurophysiol 94 (6):3788–3794. https://doi.org/10.1152/jn.00230.2005

    Article  PubMed  Google Scholar 

  43. Panteleev SS, Sivachenko IB, Lyubashina OA (2021) The buspirone-dependent abdominal pain transmission within the nucleus tractus solitarius in the rat. Neuroscience 452:326–334. https://doi.org/10.1016/j.neuroscience.2020.11.032

    Article  CAS  PubMed  Google Scholar 

  44. Brink TS, Mason P (2003) Raphe magnus neurons respond to noxious colorectal distension. J Neurophysiol 89(5):2506–2015. https://doi.org/10.1152/jn.00825.2002

    Article  PubMed  Google Scholar 

  45. Zhang HQ, Al-Chaer ED, Willis WD (2002) Effect of tactile inputs on thalamic responses to noxious colorectal distension in rat. J Neurophysiol 88(3):1185–1196. https://doi.org/10.1152/jn.2002.88.3.1185

    Article  PubMed  Google Scholar 

  46. Gao J, Wu X, Owyang C, Li Y (2006) Enhanced responses of the anterior cingulate cortex neurones to colonic distension in viscerally hypersensitive rats. J Physiol 570(Pt 1):169–183. https://doi.org/10.1113/jphysiol.2005.096073

    Article  CAS  PubMed  Google Scholar 

  47. Han F, Zhang YF, Li YQ (2003) Fos expression in tyrosine hydroxylase-containing neurons in rat brainstem after visceral noxious stimulation: an immunohistochemical study. World J Gastroenterol 9(5):1045–1050. https://doi.org/10.3748/wjg.v9.i5.1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang L, Martínez V, Larauche M, Taché Y (2009) Proximal colon distension induces Fos expression in oxytocin-, vasopressin-, CRF- and catecholamines-containing neurons in rat brain. Brain Res 1247:79–91. https://doi.org/10.1016/j.brainres.2008.09.094

    Article  CAS  PubMed  Google Scholar 

  49. Almeida A, Leite-Almeida H, Tavares I (2006) Medullary control of nociceptive transmission: Reciprocal dual communication with the spinal cord. Drug Discov Today Dis Mech 3(3):305–312. https://doi.org/10.1016/j.ddmec.2006.09.001

    Article  Google Scholar 

  50. Lyubashina OA, Sivachenko IB (2017) The 5-HT4 receptor-mediated inhibition of visceral nociceptive neurons in the rat caudal ventrolateral medulla. Neuroscience 359:277–288. https://doi.org/10.1016/j.neuroscience.2017.07.039

    Article  CAS  PubMed  Google Scholar 

  51. Panteleev SS, Sivachenko IB, Lyubashina OA (2018) The central effects of buspirone on abdominal pain in rats. Neurogastroenterol Motil 30(11):e13431. https://doi.org/10.1111/nmo.13431

    Article  CAS  PubMed  Google Scholar 

  52. Panteleev SS, Sivachenko IB, Busygina II, Lyubashina OA (2020) Effects of the infralimbic cortex stimulation on the caudal ventrolateral reticular formation neuron responses to the nociceptive rat colon distension. Russ J Physiol 106(12):1524–1540. (In Russ). https://doi.org/10.31857/S0869813920120067

    Article  Google Scholar 

  53. Campos RR, Carillo BA, Oliveira-Sales EB, Silva AM, Silva NF, Futuro Neto HA, Bergamaschi CT (2008). Role of the caudal pressor area in the regulation of sympathetic vasomotor tone. Braz J Med Biol Res 41(7):557–562. https://doi.org/10.1590/s0100-879x2008000700002

    Article  CAS  PubMed  Google Scholar 

  54. Han Y, Yu LC (2009) Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats. Neurosci Lett 454(1):101–104. https://doi.org/10.1016/j.neulet.2009.02.062

    Article  CAS  PubMed  Google Scholar 

  55. Ortiz JP, Heinricher MM, Selden NR (2007) Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience 148(3):737–743. https://doi.org/10.1016/j.neuroscience.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  56. Cobos A, Lima D, Almeida A, Tavares I (2003) Brain afferents to the lateral caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat. Neuroscience 120(2):485–498. https://doi.org/10.1016/s0306-4522(03)00209-4

    Article  CAS  PubMed  Google Scholar 

  57. Saha S (2005) Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin Exp Pharmacol Physiol 32(5–6):450–456. https://doi.org/10.1111/j.1440-1681.2005.04210.x

    Article  CAS  PubMed  Google Scholar 

  58. Jia HG, Rao ZR, Shi JW (1997) Evidence of gamma-aminobutyric acidergic control over the catecholaminergic projection from the medulla oblongata to the central nucleus of the amygdala. J Comp Neurol 381(3):262–281. https://doi.org/10.1002/(sici)1096-9861(19970512)381:3<262::aid-cne2>3.0.co;2-0

    Article  CAS  PubMed  Google Scholar 

  59. Pinto M, Lima D, Castro-Lopes J, Tavares I (2003) Noxious-evoked c-fos expression in brainstem neurons immunoreactive for GABAB, mu-opioid and NK-1 receptors. Eur J Neurosci 17(7):1393–1402. https://doi.org/10.1046/j.1460-9568.2003.02586.x

    Article  PubMed  Google Scholar 

  60. Gieroba ZJ, Li YW, Blessing WW (1992) Characteristics of caudal ventrolateral medullary neurons antidromically activated from rostral ventrolateral medulla in the rabbit. Brain Res 582(2):196–207. https://doi.org/10.1016/0006-8993(92)90133-t

    Article  CAS  PubMed  Google Scholar 

  61. Oshima N, Kumagai H, Iigaya K, Onimaru H, Kawai A, Nishida Y, Saruta T, Itoh H (2012) Baro-excited neurons in the caudal ventrolateral medulla (CVLM) recorded using the whole-cell patch-clamp technique. Hypertens Res 35(5):500–506. https://doi.org/10.1038/hr.2011.211

    Article  CAS  PubMed  Google Scholar 

  62. Chapp AD, Gui L, Huber MJ, Liu J, Larson RA, Zhu J, Carter JR, Chen QH (2014) Sympathoexcitation and pressor responses induced by ethanol in the central nucleus of amygdala involves activation of NMDA receptors in rats. Am J Physiol Heart Circ Physiol 307(5):H701–H709. https://doi.org/10.1152/ajpheart.00005.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li JN, Sheets PL (2018) The central amygdala to periaqueductal gray pathway comprises intrinsically distinct neurons differentially affected in a model of inflammatory pain. J Physiol 596(24):6289–6305. https://doi.org/10.1113/JP276935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Benarroch EE (2012) Periaqueductal gray: an interface for behavioral control. Neurology 78(3):210–217. https://doi.org/10.1212/WNL.0b013e31823fcdee

    Article  PubMed  Google Scholar 

  65. Samineni VK, Grajales-Reyes JG, Copits BA, O’Brien DE, Trigg SL, Gomez AM, Bruchas MR, Gereau RW 4th (2017) Divergent modulation of nociception by glutamatergic and GABAergic neuronal subpopulations in the periaqueductal gray. eNeuro 4(2):ENEURO.0129-16.2017. https://doi.org/10.1523/ENEURO.0129-16.2017

  66. Ji G, Neugebauer V (2010) Reactive oxygen species are involved in group I mGluR-mediated facilitation of nociceptive processing in amygdala neurons. J Neurophysiol 104(1):218–229. https://doi.org/10.1152/jn.00223.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gonçalves L, Dickenson AH (2012) Asymmetric time-dependent activation of right central amygdala neurones in rats with peripheral neuropathy and pregabalin modulation. Eur J Neurosci 36(9):3204–3213. https://doi.org/10.1111/j.1460-9568.2012.08235.x

    Article  PubMed  Google Scholar 

  68. Lyubashina OA, Itsev DE (2007) NO-Dependent mechanisms of amygdalofugal modulation of hypothalamic autonomic neurons. Neurosci Behav Physiol 37(9):895–901. https://doi.org/10.1007/s11055-007-0096-2

    Article  CAS  PubMed  Google Scholar 

  69. Callahan LB, Tschetter KE, Ronan PJ (2013) Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses. Front Neurosci 7:195. https://doi.org/10.3389/fnins.2013.00195

    Article  PubMed  PubMed Central  Google Scholar 

  70. Marcilhac A, Siaud P (1997) Identification of projections from the central nucleus of the amygdala to the paraventricular nucleus of the hypothalamus which are immunoreactive for corticotrophin-releasing hormone in the rat. Exp Physiol 82(2):273–281. https://doi.org/10.1113/expphysiol.1997.sp004022

    Article  CAS  PubMed  Google Scholar 

  71. Bowman BR, Kumar NN, Hassan SF, McMullan S, Goodchild AK (2013) Brain sources of inhibitory input to the rat rostral ventrolateral medulla. J Comp Neurol 521(1):213–232. https://doi.org/10.1002/cne.23175

    Article  CAS  PubMed  Google Scholar 

  72. Geerling JC, Shin JW, Chimenti PC, Loewy AD (2010) Paraventricular hypothalamic nucleus: axonal projections to the brainstem. J Comp Neurol 518(9):1460–1499. https://doi.org/10.1002/cne.22283

    Article  PubMed  PubMed Central  Google Scholar 

  73. Yang Z, Coote J (1999) The influence of the paraventricular nucleus on baroreceptor dependent caudal ventrolateral medullary neurones of the rat. Pflügers Arch 438(1):47–52. https://doi.org/10.1007/s004240050878

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the Program of Fundamental Research in State Academies of Sciences for 2013–2020.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental planning (O.A.L.); data collection (I.B.S. and I.I.B.); data processing (O.A.L. and I.B.S.); writing and editing a manuscript (O.A.L., I.B.S., I.I.B.).

Corresponding author

Correspondence to O. A. Lyubashina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest that might be associated with the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, No. 10, pp. 1219–1234https://doi.org/10.31857/S086981392110006X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyubashina, O.A., Sivachenko, I.B. & Busygina, I.I. Amygdalofugal Modulation of Visceral Nociceptive Transmission in the Rat Caudal Ventrolateral Medulla under Normal Conditions and Intestinal Inflammation. J Evol Biochem Phys 57, 1150–1162 (2021). https://doi.org/10.1134/S0022093021050161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021050161

Keywords:

Navigation