Skip to main content
Log in

Neurophysiological approaches to studying the functional role of auditory critical bands

  • Comparative and Ontogenic Physiology
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Neurophysiological data on the evaluation of neural correlates of the involvement of auditory critical bands in sound localization and recognition are presented. Single unit activity was recorded extracellularly in the central nucleus of the inferior colliculus in house mouse females. In the first part, the neuronal sensitivity to acoustic signals simulating spectral localization cues (notch noise with different bandwidths) was studied. Evaluation of neuronal response variability depending on notch bandwidths revealed that the 1/3 octave notch bandwidth was optimal for the analysis of the localization-significant spectral information. This notch bandwidth corresponded to the average critical bandwidth of the auditory midbrain neurons determined previously by the narrow-band masking method. In the second part, the selectivity of neuronal responses to a discomfort-signaling mouse pup wriggling call, its models and frequency components, was evaluated. The data obtained demonstrated that the wriggling call models with frequency components located, like in a natural call, in three non-overlapping critical bands evoked stronger neuronal responses than the other models. These findings support the suggestion of the universal role the critical-band mechanism plays in processing different parameters of acoustic stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fletcher, H., Auditory patterns, Rev. Modern Phys., 1940, vol. 12, pp. 47–65.

    Article  Google Scholar 

  2. Zwicker, E. and Feldtkeller, R., Das Ohr als Nachrichtenempf nger, Stuttgart, 1967.

    Google Scholar 

  3. Greenwood, D.D., Critical bandwidth and the frequency coordinates of the basilar membrane, J. Acoust. Soc. Amer., 1961, vol. 33, pp. 1344–1356.

    Article  Google Scholar 

  4. Vartanian, I., Egorova, M., and Ehret, G., Expression of the main properties of critical bands in the neuronal activity of posterior quadrigemini in mice, Dokl.Biol Sci., 1999, vol. 368, pp. 437–439.

    Google Scholar 

  5. Egorova, M., Vartanian, I., and Ehret, G., Neurophysiological correlates of critical bands in the auditory midbrain, Sens. Systems., 2002, vol. 16, pp. 3–12.

    Google Scholar 

  6. Egorova, M. and Ehret, G., Tonotopy and inhibition in the midbrain inferior colliculus shape spectral resolution of sounds in critical bands, Eur. J. Neurosci., 2008, vol. 28, pp. 675–692.

    Article  PubMed  Google Scholar 

  7. Egorova, M.A. and Akimov, A.G., Spectral coding in auditory midbrain neurons, J. Integr. Neurosci., 2013, vol. 12, pp. 1–15.

    Article  PubMed  Google Scholar 

  8. Batteau, D.W., The role of pinna in human localization, Proc. Roy. Soc., 1967, vol. 168, pp. 158–180.

    Article  CAS  Google Scholar 

  9. Gardner, M.B. and Gardner, R.S., Problem of localization in the median plan: effect of pinna cavity occlusion, J. Acoust. Soc. Amer., 1973, vol. 53, pp. 400–408.

    Article  CAS  Google Scholar 

  10. Shaw, E.A.G., External ear response and sound localization, Localization of Sound: Theory and Applications, Groton, CT: Amphora, 1982. pp. 30–41.

    Google Scholar 

  11. Middlebrooks, J.C. and Green, D.M., Sound localization by human listeners, Ann. Rev. Psychol., 1991, vol. 42, pp. 135–159.

    Article  CAS  Google Scholar 

  12. Musicant, A.D., Chan, J.C.K., and Hild, J.E., Direction-dependent spectral properties of cat external ear: New data and cross-species comparisons, J. Acoust. Soc. Amer., 1990, vol. 87, pp. 757–781.

    Article  CAS  Google Scholar 

  13. Rice, J.J., May, B.J., Spirou, G.A., and Young, E.D., Pinna-based spectral cues for sound localization in cat, Hear. Res., 1992, vol. 58, pp. 132–152.

    Article  CAS  PubMed  Google Scholar 

  14. Rogers, M.E. and Butler, A., The linkage between stimulus frequency and covert peak areas as it relates to monaural localization, Percept. Psychophys., 1992, vol. 52, pp. 536–546.

    Article  CAS  PubMed  Google Scholar 

  15. Middlebrooks, J.C., Narrow-band sound localization related to external ear acoustics, J. Acoust. Soc. Amer., 1992, vol. 92, pp. 2607–2624.

    Article  CAS  Google Scholar 

  16. Neti, C., Young, E.D., and Schneider, M.N., Neural network models of sound localization based on directional filtering by the pinna, J. Acoust. Soc. Amer., 1992, vol. 93, pp. 3140–3156.

    Article  Google Scholar 

  17. Wightman, F. and Kistler, D., Of vulcan ears, human ears and ‘earprints’, Nat. Neurosci., 1998, vol. 1, pp. 337–339.

    Article  CAS  PubMed  Google Scholar 

  18. Zakarouskas, P. and Cynader, M.S., A computational theory of spectral cue localization, J. Acoust. Soc. Amer., 1993, vol. 94, pp. 1323–1331.

    Article  Google Scholar 

  19. Al’tman, Ya.A., Lokalizatsia zvuka. Neirofiziologicheskie mekhanizmy (Sound Localization. Neurophysiological Mechanisms), Leningrad, 1972.

    Google Scholar 

  20. Ehret, G., Frequency resolution, spectral filtering, and integration on the neuronal level, Auditory Function. Neurobiological Bases of Hearing, New York, Wiley, 1988. pp. 363–384.

    Google Scholar 

  21. Ehret, G., Preadaptations in the auditory system of mammals for phoneme perception, The Auditory Processing of Speech. From Sounds to Words, Berlin, de Gruyter, 1992. pp. 99–112.

    Google Scholar 

  22. Ehret, G. and Haak, B., Ultrasound recognition in house mice: key-stimulus configuration and recognition mechanism, J. jomp. Physiol., 1982, vol. 148, pp. 245–251.

    Article  Google Scholar 

  23. Ehret, G. and Riecke, S., Mice and human perceive multiharmonic communication sounds in the same way, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 479–482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Egorova, M.A. and Akimov, A.G., Acoustic characteristics of the low-frequency nest call of discomfort of the house mouse (Mus musculus) early ontogenesis, Acoustical Physics, 2010, vol. 56, pp. 364–369.

    Article  Google Scholar 

  25. Malinina, E.S., Auditory neurons receptive fields and spectral notches processing in the mouse middle brain, Sensornye Systemy, 2002, vol. 16, pp. 13–22.

    Google Scholar 

  26. Holmstrom, L.A., Eeuwes, L.B.M., Roberts, P.D., and Portfors, C.V., Efficient encoding of vocalizations in the auditory midbrain, J. Neurosci., 2010, vol. 30, pp. 802–819.

    Article  CAS  PubMed  Google Scholar 

  27. Imig, T.J., Poirier, P., Irons, W.A., and Samson, F.K., Monaural spectral contrast mechanism for neural sensitivity to sound direction in medial geniculate body of the cat, J. Neurophysiol., 1997, vol. 78, pp. 2754–2771.

    CAS  PubMed  Google Scholar 

  28. Malinina, E.S. and Vartanyan, I.A., Activity of neurons in the mouse Inferior Colliculus in relation to the position and direction of displacement of spectral contrast, Neuroscience and Behavioral Physiology, 2004, vol. 34, pp. 961–974.

    Article  CAS  PubMed  Google Scholar 

  29. Imig, T.J., Bibikov, N.G., Poirier, P., and Samson, F.K., Directionality derived from pinna-cue spectral notches in cat dorsal cochlear nucleus, J. Neurophysiol., 2000, vol. 83, pp. 907–995.

    CAS  PubMed  Google Scholar 

  30. Poirier, P., Samson, F.K., and Imig, T.J., Spectral shape sensitivity contributes to the azimuth tuning of neurons in the cat’s inferior colliculus, J. Neurophysiol., 2003, vol. 89, pp. 2760–2777.

    Article  PubMed  Google Scholar 

  31. Barone, P., Clarey, J.C., Irons, W.A., and Imig, T.J., Single unit responses in the primary auditory cortex and medial geniculate body of the cat: evidence for cortical synthesis of azimuth receptive fields with nonmonotonic level tuning, J. Neurophysiol., 1996, vol. 75, pp. 1206–1220.

    CAS  PubMed  Google Scholar 

  32. Samson, F.K., Barone, W.P., Irons, W.A., Clarey, J.C., Poirier, P., and Imig, T.J., Directionality derived from differential sensitivity to monaural and binaural cues in cat’s medial geniculate body, J. Neurophysiol., 2000, vol. 84, pp. 1330–1345.

    CAS  PubMed  Google Scholar 

  33. Malmierca, M.S., The inferior colliculus: a center for convergence of ascending and descending auditory information, Neuroembryol. Aging, 2004, vol. 3, pp. 215–229.

    Article  Google Scholar 

  34. Fuzessery, Z.M. and Hall, J.C., Role of GABA in shaping frequency tuning and creating FM sweep selectivity in the inferior colliculus, J. Neurophysiol., 1996, vol. 76, pp. 1059–1073.

    CAS  PubMed  Google Scholar 

  35. Le Beau, F.F.N., Malmierca, M.S., and Rees, A., The role of inhibition in determining neuronal response properties in the inferior colliculus, Advances in Hearing Research, Singapore, Words Scientific Publ., 1995. pp. 300–311.

    Google Scholar 

  36. Palombi, P.S. and Caspary, D.M., GABA inputs control discharge rate primarily within frequency receptive fields of inferior colliculus neurons, J. Neurophysiol., 1996, vol. 75, pp. 2211–2219.

    CAS  PubMed  Google Scholar 

  37. Le Beau, F.F.N., Malmierca, M.S., and Rees, A., Contribution of GABA-and glicin-mediated inhibition to monaural temporal response properties of neurons in inferior colliculus, J. Neurophysiol., 1996, vol. 75, pp. 902–919.

    PubMed  Google Scholar 

  38. Kulkarni, A. and Colburn, H.S., Role of spectral detail in sound-source localization, Nature, 1998, vol. 396, pp. 747–749.

    Article  CAS  PubMed  Google Scholar 

  39. Rauschecker, J.P., Parallel processing in the auditory cortex of primates, Audiol. Neurootol., 1998, vol. 3, pp. 86–103.

    Article  CAS  PubMed  Google Scholar 

  40. Kaas, J.H. and Hackett, T.A., Subdivisions of auditory cortex and processing streams in primates, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11793–11799.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Rauschecker, J.P. and Tian, B., Mechanisms and streams for processing of “what” and “where” in auditory cortex, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11800–11806.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Ungerlieder, L.G. and Mishkin, M., Two cortical visual systems, Analysis of Visual Behavior, Boston, MIT Press, 1982. pp. 549–586.

    Google Scholar 

  43. Recanzone, G.H. and Cohen, Y.E., Serial and parallel processing in the primate auditory cortex revisited, Behav. Brain. Res., 2010, vol. 206, pp. 1–7.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Kuwada, S., Bishop, B., and Kim, D.O., Approaches to the study of neural coding of sound source location and sound envelope in real environments, Front. Neural Circuits., 2012, vol. 6, pp. 1–12.

    Article  Google Scholar 

  45. Kuwada, S., Bishop, B., and Kim, D.O., Azimuth and envelope coding in the inferior colliculus of the unanesthetized rabbit: effect of reverberation and distance, J. Neurophysiol., 2014, vol. 112, pp. 1340–1355.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Lewald, J. and Getzmann, S., When and where of auditory spatial processing in cortex: a novel approach using electrotomography, PLoS One, 2011, vol. 6, pp. 1–17.

    Article  Google Scholar 

  47. Tian, B., Reser, D., Durham, A., Kustov, A., and Rauschecker, J.P., Functional specialization in rhesus monkey auditory cortex, Science, 2001, vol. 292, pp. 290–293.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Malinina.

Additional information

Original Russian Text © E.S. Malinina, M.A. Egorova, A.G. Akimov, 2015, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2015, Vol. 51, No. 5, pp. 352—361.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malinina, E.S., Egorova, M.A. & Akimov, A.G. Neurophysiological approaches to studying the functional role of auditory critical bands. J Evol Biochem Phys 51, 401–411 (2015). https://doi.org/10.1134/S0022093015050063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093015050063

Keywords

Navigation