Skip to main content
Log in

Structure of autorhythmical activity of contractile systems

  • Problem Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

In the autorhythmical activity underlying many visceral and in early ontogenesis also somatomotor systems, three kinds of rhythms are to be distinguished: basic, reflecting activity of individual organs and of systems of organs, the secondary ones representing result of the frequency and amplitude modulation of the basic rhythms, and the rhythmical periodic activity whose distinguishing feature is alternation of the activity and rest phases. Each kind has principally different frequency characteristics, different organization and localization of sources. The frequency of basic rhythms is determined by the generator inserted into the system. It serves an individual characteristic of the current state of function of the organ, the degree of maturity of its motor apparatus. The secondary rhythm and the rhythm of the periodic activity cycles are provided by oscillatory processes common to the whole organism. Universality of these rhythms promotes integration of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Cloudsley-Thompson, J.L., Rhythmic Activity in Animal Physiology and Behavior, New York, London, 1961.

  2. Ashoff, Yu., Review of Biological Rhythms, Biologich. Ritmy, Moscow, 1984, vol. 1, pp. 12–21.

    Google Scholar 

  3. Salanki, J., Neural Mechanisms in Rhythm Regulation of Vertebrates, Neurobiology of Invertebrates, Tihany, 1973, pp. 17–31.

  4. Hirota, A., Kamino, K., Komuro, H., Sakai, T., and Joada, T., Early Events in Development of Electrical Activity and Contraction in Embryonic Rat Heart Assessed by Optical Recording, J. Physiol., 1985, vol. 369, pp. 209–227.

    PubMed  CAS  Google Scholar 

  5. Ren, J. and Greer, J.J., Ontogeny of Rhythmic Motor Pattern, J. Neurophysiol., 2003, vol. 89, pp. 1187–1195.

    Article  PubMed  Google Scholar 

  6. Jansen, A.H. and Chernick, V., Fetal Breathing and Development of Control of Breathing, J. Appl. Physiol., 1983, vol. 70, pp. 1431–1446.

    Google Scholar 

  7. Markosyan, A.A., Human Development and Reliability of the Human System, Osnovy morfologii i fiziologii organizma detei i podrtostkov (Fundamentals of Morphology and Physiology of Organism of Children and Adolescents), Moscow, 1969, pp. 5–13.

  8. Mazurov, M.E., Rhythmogenesis in the Heart Sinoatrial Node, Biofizika, 2006, vol. 51, pp. 1092–1099.

    PubMed  CAS  Google Scholar 

  9. Opthof, T., Embryological Development of Pacemaker Hierarchy and Membrane Currents Related to the Function of the Adult Sinus Node: Implications for Autonomic Biopacemakers, Med. Biol. Eng. Comput., 2007, vol. 45, pp. 119–132.

    Article  PubMed  Google Scholar 

  10. Yoneda, S., Takano, H., Takaki, M., and Suzuki, H., Properties of Spontaneously Active Cells Distributed in the Submucosal Layer of Mouse Proximal Colon, J. Physiol., 2002, vol. 542, no. 3, pp. 887–897.

    Article  PubMed  CAS  Google Scholar 

  11. Fukuta, H., Kito, Y., and Suzuki, H., Spontaneous Electrical Activity and Associated Changes in Calcium Concentration in Guinea-pig Gastric Smooth Muscle, J. Physiol., 2002, vol. 540, pp. 249–260.

    Article  PubMed  CAS  Google Scholar 

  12. Takaki, M., Gut Pacemaker Cells: the Interstitial Cells of Cajal (ICC), J. Smooth Muscle Res., 2003, vol. 39, pp. 137–161.

    Article  PubMed  Google Scholar 

  13. Bueno, L. and Ruckebush, Y., Perinatal Development of Intestinal Myoelectrical Activity in Dogs and Sheep, Am. J. Physiol., 1979, vol. 273, pp. E61–E67.

    Google Scholar 

  14. Abramochkin, D.V., Sukhova, G.S., and Rozenshtraukh, L.V., Mechanisms of Function and Regulation of the Mammalian Sinoatrial Node, Usp. Fiziol. Nauk, 2009, vol. 40, pp. 21–41.

    PubMed  CAS  Google Scholar 

  15. Cajal, R.S., Histologie du Systeme Nerveux del Homme et des Vertebres, Grand Sympatique, Paris, 1911.

    Google Scholar 

  16. Huizinga, J.D., Thuneberg, I., Kluppel, N., Malisz, J., Mikkelsen, H., and Bernstein, A., W/kit Gene Required for Interstitial Pacemaker Activity, Nature, 1995, vol. 373, pp. 347–349.

    Article  PubMed  CAS  Google Scholar 

  17. Huizinga, J.D., Thuneberg, L., Vanderwinden, J.M., and Rumessen, J.J., Interstitial Cells of Cajal as Pharmacological Targets for Gastrointestinal Motility Disorders, Trends Pharmacol. Sci., 1997, vol. 18, pp. 393–403.

    PubMed  CAS  Google Scholar 

  18. Sanders, K.M., Ordog, T., Koh, S.D., Torihashi, S., and Ward, S.M., Development and Plasticity of Interstitial Cells of Cajal, Neuroenterol. Motil., 1999, vol. 11, pp. 311–338.

    Article  CAS  Google Scholar 

  19. Won, K.J., Sanders, K.M., and Ward, S.M., Interstitial Cells of Cajal Mediate Mechanosensitive Responses in the Stomach, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 14 913–14 918.

    CAS  Google Scholar 

  20. Sanders, K.M., Koh, S.D., and Ward, S., Interstitial Cells of Cajal as Pacemakers in the Gastrointestinal Tract, Ann. Rev. Physiol., 2006, vol. 68, pp. 345–374.

    Article  Google Scholar 

  21. Klemm, M.F., Exintaris, B., and Lang, R.J., Identification of the Cells Underlying Pacemaker Activity in the Guinea-Pig Upper Urinary Tract, J. Physiol., 1999, vol. 519, pp. 867–884.

    Article  PubMed  CAS  Google Scholar 

  22. Mezger, R., Shuster, T., and Till, H., Cajal-Like Cells in the Upper Urinary Tract: Comparative Study in Various Species, Pediatr. Surg. Int., 2005, vol. 21, pp. 169–174.

    Article  Google Scholar 

  23. Weiss, R.M., Tamarkin, F.J., and Wheeler, M.A., Pacemaker Activity in the Upper Urinary Tract, J. Smooth Muscle Res., 2006, vol. 42, pp. 103–115.

    Article  PubMed  Google Scholar 

  24. Lang, R.J., Tonta, M.A., Zoltkowski, B.Z., Meeker, W.F., Wendt, I., and Parkington, H.C., Pyeloureteric Peristalsis: Role of Atypical Smooth Muscle Cells and Interstitial Cells of Cajal-Like Cells as Pacemakers, J. Physiol., 2006, vol. 576,Pt. 3, pp. 695–705.

    Article  PubMed  CAS  Google Scholar 

  25. Lang, R.J., Hashitani, H., Tonta, M.A., et al., Spontaneous Electrical and Ca2+ Signals in Typical and Atypical Smooth Muscle Cells and Intestinal Cell of Cajal-Like Cells of Mouse:Renal Pelvis, J. Physiol., 2007, vol. 583, pp. 1049–1068.

    Article  PubMed  CAS  Google Scholar 

  26. Lang, R.J., Hashitani, H., Tonta, M.A., et al., Role of Ca2+ Entry and Ca2+ Stores in Atypical Smooth Muscle Cell Autorhythmicity in the Mouse Renal Pelvis, Brit. J. Pharmacol., 2007, vol. 152, pp. 1248–1259.

    Article  CAS  Google Scholar 

  27. Lang, R.J., Mulholland, E., and Exintaris, B., Characterization of the Ion Channel Currents in Single Myocytes of the Guinea Pig Prostate, J. Urol., 2004, vol. 172, pp. 1179–1187.

    Article  PubMed  CAS  Google Scholar 

  28. Exintaris, B., Nguyen, D.T., Dey, A., and Lang, R.J., Spontaneous Electrical Activity in the Prostate Gland, Auton. Neurosci., 2006, vol. 126–127, pp. 371–379.

    Article  PubMed  Google Scholar 

  29. Shafik, A., Shafik, A.A., El Sibal, O., and Shafik, I.A., Contractile Activity of the Prostate at Ejaculation: An Electrophysiological Study, Urology, 2006, vol. 67, pp. 793–796.

    Article  PubMed  Google Scholar 

  30. Lang, R.J., Hashitani, H., Tonta, M.A., et al., Spontaneous Electrical and Ca2+ Signals in Typical and Atypical Smooth Muscle Cells and Intesti nal Cell of Cajal-Like Cells of Mouse Renal Pelvis, J. Physiol,. 2007, vol. 583, pp. 1049–1058.

    Article  PubMed  CAS  Google Scholar 

  31. Shafik, A., Electro-Oviductogram: a Study of the Electromechanical Activity of the Canine Oviduct, Gynecol. Obstet. Invest., 1996, vol. 42, pp. 253–257.

    Article  PubMed  CAS  Google Scholar 

  32. Shafik, A., Shafik, A.A., El Sibai, O., and Shafik, I.A., Specialized Pacemaking Cells in the Human Fallopian Tube, Mol. Human Reprod., 2005, vol. 11, pp. 503–505.

    Article  CAS  Google Scholar 

  33. Shafik, A., Shafik, A.A., Sibai, O.E., and Shafik, I.A., Identification of Vaginal Pacemaker: an Immunohistochemical and Morphometric Study, J. Obstet. Gynecol., 2007, vol.27, pp. 485–488.

    Article  CAS  Google Scholar 

  34. Harhun, M.I., Gordienko, D., Povstjan, O.V., et al., Function of Interstitial Cells of Cajal in the Rabbit Portal Vein, Circ. Res., 2004, vol. 95, pp. 619–626.

    Article  PubMed  CAS  Google Scholar 

  35. Harhun, M.I., Pucovsky, V., Povstjan, O.V., et al., Interstitial Cells in the Vasculature, J. Cell. Mol. Med., 2005, vol. 9, pp. 232–243.

    Article  PubMed  CAS  Google Scholar 

  36. Arata, F., Onimaru, H., and Homma, I., Respiration-Related Neurons in the Ventral Medulla of Newborn Rats in vitro, Brain Res., 1990, vol. 24, pp. 599–604.

    CAS  Google Scholar 

  37. Smith, J., Ellenberger, H., Ballanyi, K., Richter, D., and Feldman, J., Pre-Botzinger Complex: a Brainstem Region That May Generate Respiratory Rhythm in Mammals, Science, 1991, vol. 254, pp. 6–729.

    Google Scholar 

  38. Pagliardini, S., Ren, J., and Gree, J.J., Ontogeny of the Pre-Botzinger Complex in Perinatal Rat, J. Neurosci., 2003, vol. 22–23, pp. 9575–9584.

    Google Scholar 

  39. Boddi, K. and Dawes, G.S., Fetal Breathing, Brit. Med. Bull., 1975, vol. 31, pp. 3–7.

    Google Scholar 

  40. Cookel, R. and Berger, P.J., Development of Patterns of Activity in Diaphragm of Fetal Lamb Early in Gestation, J. Neurobiol., 1996, vol. 30, pp. 385–396.

    Article  Google Scholar 

  41. Kobayashi, K., Lemke, R.P., and Greer, J.J., Ultrasound Measurements of Fetal Breathing Movements in the Rat, J. Appl. Physiol., 2001, vol. 91, pp. 316–320.

    PubMed  Google Scholar 

  42. Timofeeva, O.P. and Vdovichenko, N.D., The Study of Heart, Breathing and Motor Function in Rat Fetus, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 559–566.

    PubMed  CAS  Google Scholar 

  43. Bursian, A.V., Rannii ontogenez motornogo apparata teplokrovnykh (Early Ontogenesis of Motor Apparatus of Homoiothermal Animals, Leningrad, Nauka, 1983.

    Google Scholar 

  44. Jansen, A.H. and Chernick, V., Fetal Breathing and Development of Control of Breathing, J. Appl. Physiol., 1991, vol. 70, pp. 1431–1446.

    PubMed  CAS  Google Scholar 

  45. Safonov, V.A., Eksler, N.D., and Pelevinov, V.A., The Establishment of Function of Respiratory System in Ontogenesis, Biologich. Nauki, 1983, no. 12, pp. 4–22.

  46. Schifrin, B.S., Artenos, J., and Lyseight, N., Late-Onset Fetal Cardiac Decelerations Associated with Fetal Breathing Movements, J. Matern. Fetal Neonatal Med., 2002, vol. 12, pp. 253–259.

    Article  PubMed  CAS  Google Scholar 

  47. Kulaev, B.S., Bursian, A.V., Timofeeva, O.P., Dmitrieva, L.E., Polyakova, L.A., and Semenova, Yu.O., Rhythmic Processes in Developing Organism and Forms of its Coordination, Zh. Evol. Biokhim. Fiziol., 1999, vol. 86, pp. 893–909.

    Google Scholar 

  48. Bursian, A.V., Kulaev, B.S., Timofeeva, O.P., Vdovichenko, N.D., Dmitrieva, L.E., and Polyakova, L.A., Interactions of Autorhythmic Contractile Function of Skeleton Muscles and Smooth Muscles of Visceral Organs, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 117–122.

    PubMed  CAS  Google Scholar 

  49. Bursian, A.V., Kulaev, B.S., Dmitrieva, L.E., Polyakova, L.A., and Semenova, Yu.O., Synchronization of Endogenous Somato- and Visceromotor Activity in Rats in Ontogenesis, Zh. Evol. Biokhim. Fiziol., 2001, vol. 37, pp. 195–200.

    PubMed  CAS  Google Scholar 

  50. Kulaev, B.S., Bursian, A.V., and Semenova, Yu.O., Coordination of Endogenous Rhythmical of Somatic and Visceral Systems in Early Ontogenesis, Arkhiv Klin. Eksperim. Med., Donetsk, 2000, vol. 9, pp. 87–90.

    Google Scholar 

  51. Tsibulevskii, A.Yu., Khripun, A.I., Ettinger, A.P., Dubovaya, T.K., Polivoda, M.T., and Pen’kov, L. Yu., Changes of Reactivity of the Contractile Apparatus of Small Intestine under Conditions of Disturbance of Parasympathetic Innervation, Izvest. AN, Seriya Biolog., 1998, no. 2, pp. 272–276.

  52. Kuznetzov, S.V., About the Nature and Sources of the Excitation Ancient Rhythms, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 349–357.

    Google Scholar 

  53. Kuznetzov, S.V., Fast Temperature Oscillations as a Factor of Synchronization of the Spontaneous Excitation Processes in Rat Pups, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 376–383.

    Google Scholar 

  54. Axelrod, S., Garden, D., Madwed, J.B., Snidman, N.C., and Cohen, R.J., Hemodynamic Regulation; Investigation by Spectral Analysis, Am. J. Physiol., 1985, vol. 239, pp. H867–H875.

    Google Scholar 

  55. Bursian, A.V., Dmitrieva, L.E., and Sizonov, V.A., The Secondary Rhythms of Autorhythmically Functioning Systems, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, pp. 553–558.

    PubMed  CAS  Google Scholar 

  56. Bursian, A.V., Dmitrieva, L.E., and Sizonov, V.A., Effect of Change in Levels of Motor Activity and Innervation on Basic and Secondary Rhythms of Heart Contractions and g and Breathing (in press).

  57. Voino-Yasenetskii, A.V., Otrazhenie evoylutsionnykh zakonomernostei v epileptiformnoi reaktsii zhi votnyikh na deistvie vysokogo partsial’nogo davleniya (Reflection of Evolutionary Regularities in Epileptiform Reaction of Animals to the Effect of High Oxygen Partial Pressure), Moscow, Leningrad, Izdatelstvo AN SSSR, 1958.

    Google Scholar 

  58. Voino-Yasenetskii, A.V., The Rhythms of Brain Activity in Early Ontogenesis of Homoiothermal Animals, Zh. Evol. Biokhim. Fiziol., 1972, vol. 8, pp. 333–342.

    Google Scholar 

  59. Dmitrieva, L.E., Spindle-Like Potentials of the Large Hemisphere Cortex in Rabbit Ontogenesis, Zh. Evol. Biokhim. Fiziol., 1980, vol. 16, pp. 380–385.

    PubMed  CAS  Google Scholar 

  60. Elshina, M.A., Periodic Phenomena in the Sensomotor Cortex of Rat Pups and Their Relation to the Autogenic Motor Activity, Funktsional’naya evolyutsiya tsentral’noi nervnoi sistemy (Functional Evolution of the Central Nervous System), Nauka, 1983.

  61. Szursevski, J.H, A 100-Year Perspective on Gastrointestinal Motility, Am. J. Physiol., 1998, vol. 274, no. 3, pp. G447–G453.

    Google Scholar 

  62. Baker, J. and Berseth, C., Postnatal Changes in Inhibitory Regulation of Intestinal Motor Activity in Human and Canine Neonates, Pediatr. Res., 1995, vol. 38, no. 2, pp. 133–139.

    Article  PubMed  CAS  Google Scholar 

  63. Bursian, A.V., Formation of Reflex to Muscle Stretch in Rat Pups, Zh. Evol. Biokhim. Fiziol., 1973, vol. 9, pp. 599–606.

    Google Scholar 

  64. Bursian, A.V. and Sviderskaya, G.E., Peculiarities of Reflex Reactions of the Rat Pup Primary Motor Center at Early Terms after Birth, Zh. Evol. Biokhim. Fiziol., 1976, vol. 12, pp. 322–327.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bursian.

Additional information

Original Russian Text © A.V. Bursian, 2012, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2012, Vol. 48, No. 2, pp. 186–199.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursian, A.V. Structure of autorhythmical activity of contractile systems. J Evol Biochem Phys 48, 219–235 (2012). https://doi.org/10.1134/S0022093012020120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093012020120

Key words

Navigation