Skip to main content
Log in

Modulating role of lipids and their fatty acids in adaptation of the White Sea mussels Mytilus edulis L. to environmental salinity change

  • Comparative and Ontogenic Biochemistry
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Role of lipids and fatty acids (FA) in littoral and sublittoral White Sea mussels Mytilus edulis L. was studied at various stages of reproductive cycle in the phenotypic adaptation (acclimation) to changes of the sea water salinity. The obtained data indicate differences in the mussel lipid and fatty acid spectra, which are connected both with their location (littoral or sublittoral) and with the spawning period stage (3b—release of gametes or 3c—resorption of residual sex products). Lipids and FA of both mussel groups respond to the salinity changes to the greater degree at the 3b than at the 3c stage. In the littoral mussels at the 3b and 3c stages there were revealed differently directed changes in the content of membrane lipid—cholesterol—and in the cholesterol: phospholipids ratio. In the sublittoral mussels that are less adapted to extreme action of abiotic factors, more significant changes were found in the lipid and FA compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinne, O., Adaptation, a Primary Mechanism of Evolution. Phylogeny and Evolution of Crustacea, Special Publications of the Museum of Comparative Zoology, 1963, pp. 27–50.

  2. Hochachka, P.W. and Somero, G.N., Biochemical Adaptation, Princeton, New Jersey: Princeton University, 1984.

    Google Scholar 

  3. Natochin, Yu.V., Transport of Water and Sodium in Osmoregulating Organisms, Doctorate Dissertation, Leningrad, 1967.

  4. Berger, V.Ya., Adatatsii morskikh mollyuskov k izmemeniyu solenosti sredy (Adaptation of Marine Molluscs to Changes of Environmental Salinity), Leningrad, 1986.

  5. Kreps, E.M., Lipidy kletochnykh membran. Evolutsiya lipidov mozga. Adapattsionnaya funktsiya lipidov (Lipids of Cellular Membranes. Evolution of Brain Lipids. Adaptive Function of Lipids), Leningrad, 1981.

  6. Hochachka, P. and Somero, G., Strategiya biokhimicheskoi adaptatsii (Strategy of Biochemical Adaptation), Moscow, 1977.

  7. Luvizotto-Santos, R., Lee, J., Branco, Z., and Nery, L., Lipids as Energy Source during Salinity Acclimation in the Euryhaline Crab Chasmagnathus granulata Dana, 1851 (Crustecea-grapsidae), J. Exp. Zool. Comp. Exp. Biol., 2003, vol. 295, no. 2, pp. 200–205.

    Article  Google Scholar 

  8. Chapelle, S., Aspects of Phospholipid Metabolism in Crustaceans as Related to Changes in Environmental Temperature and Salinities, Comp. Biochem. Physiol., 1986, vol. 84B, pp. 423–439.

    CAS  Google Scholar 

  9. Germanovich, A.D., Chekaltana, D.A., Pimenova, T.V., and Vaitman, G.A., Dynamics of Chemical Body Composition in the Fry Body of the Salmon Trout Salmo gairdneri Rich at Adaptation to Salinity Water, Dokl. AN SSSR, 1998, vol. 300, pp. 764–768.

    Google Scholar 

  10. Diakoku, T., Yana, J., and Mazui, H., Lipid and Fatty Acid Compositions and Their Changes in the Different Organs and Tissues of Guppy, Poecilia reticulata on Sea Water Adaptation, Comp. Biochem. Physiol., 1982, vol. 73, pp. 167–169.

    Article  Google Scholar 

  11. Leray, C., Chapelle, S., Duportail, G., and Florantz, A., Changes in Fluidity and 22:6 (n-3) Content in Phospholipids of Trout Intestinal Brush-Border Membrane as Related to Environmental Salinity, Biochim. Biophys. Acta, 1984, vol. 778, pp. 233–236.

    Article  CAS  Google Scholar 

  12. Hansen, H.J.M., Kelly, S.P., and Grosell, M., Studies on Lipid Metabolism in Trout (Oncorhynchus mykiss) branchial cultures, J. Exp. Zool., 2002, vol. 293, pp. 683–692.

    Article  PubMed  CAS  Google Scholar 

  13. Kashin, A.G., Effects of Habitat Salinity on Composition of Lipids in Some Aqueous Invertebrates, Candidate Dissertation, Samara, 1997.

  14. Babkov, A.I., and Golikov, A.N., Gidrobiokompleksy Belogo morya (Hydrobiocomplexes of the White Sea), Leningrad, 1984.

  15. Folch, J., Lees, M., and Sloan-Stanley, G.H., A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissue (for Brain, Liver and Muscle), J. Biol. Chem., 1957, vol. 226, pp. 497–509.

    PubMed  CAS  Google Scholar 

  16. Sidorov, V.S, Lizenko, E.I., Bolgova, O.M., and Nefedova, Z.A., Lipidy ryb (Fish Lipids), Petrozavodsk, 1972.

  17. Engelbrecht, F.M., Mari, F., and Anderson, J.T., Cholesterol. Determination in Serum. A Rapid Direction Method, S. A. Med. J., 1974, vol. 48, no. 7, pp. 250–256.

    CAS  Google Scholar 

  18. Tsyganov, E.P., Method for Direct Methylation of Lipids after TLC without Elution with Silica Gel, Lab. Delo, 1971, no. 8, pp. 490–493.

  19. Jamieson, G.R., GLC-Identification Techniques for Longchain Unsaturated Fatty Acids, J. Chromatogr. Sci., 1975, vol. 13, pp. 491–497.

    PubMed  CAS  Google Scholar 

  20. IUPAC-IUB Commission on Biochemical Nomenclature. The Nomenclature of Lipids, J. Lipid Res., 1978, vol. 19, pp. 114–128.

    Google Scholar 

  21. Gubler, E.V., and Genkin, A.A., Primenenie kriteriev nepapametricheskoi statistiki dlya otsenki razlichii dvukh grupp nablyudenii v medico-biologicheskikh issledovaniyakh (Application of Nonparametric Statistics Criteria for Assessment of Differences of Two Groups of Observations in Medical-Biological Studies), Moscow, 1969, pp. 9–24.

  22. Gabbott, P.A., The Mollusca, vol. 2, Environmental Biochemistry and Physiology, Acad. Press Inc. 1983, pp. 165–217.

  23. Kulakovskii, E.E., Biologicheskie osnovy marikul’tury midii v Belom more (Biological Grounds of Mussel Mariculture in the White Sea), St. Petersburg, 2000.

  24. Maksimovich, N.V., Reproductive Cycle of Mytilus edulis L. in the Chupa Bay, Biologicheskie resursy Belogo morya i ikh ratsional’noe ispol’zovanie. Issledovanie midii Belogo morya (Biological Resources of the White Sea and Their Efficient Use. Study of the White Sea Mussels), Leningrad, 1985, pp. 22–35.

  25. Zakhartsev, M.V., Naumenko, N.V., and Chelomin, V.P., Nonmethylene-Interrupted Fatty Acids in Phospholipids of Membranes of the Mussel Crenomytilus grayanus, Biol. Morya, 1998, no. 24, pp. 183–186.

  26. Elyakov, G.B. and Stonik, V.A., Steroidy morskikh organizmov (Steroids of Marine Organisms), Moscow, 1988.

  27. Kagava, Y., Biomembrany (Biomembranes), Moscow, 1985.

  28. Kyaivyaryainen, E.I., Nefedova, Z.A., Bondareva, L.A., Alekseeva, N.N., and Nemova, N.N., Correlation of Activity of Endocellular Ca2+-Activated Proteinases and Cholesterol Content in Membranes of Mussels (Mytilus edulis) of the White Sea at Change of the Environmental Salinity, Byull. Eksp. Biol. Med., 2005, vol. 140, pp. 457–460.

    Article  Google Scholar 

  29. Khlebovich, V.V., Akklimatsiya zivotnykh organizmov (Acclimation of Animal Organisms), Leningrad, 1981.

  30. Zhukova, N.V., Nonmethylene-Interrupted Fatty Acids of Marine Bivalve Molluscs: Distribution among Tissues and Lipid Classes, Zh. Evol. Biokhim. Fiziol., 1992, vol. 28, pp. 434–440.

    CAS  Google Scholar 

  31. Paradis, M. and Ackman, R.G., Potential for Employing the Distribution of Anomalous Nonmethylene-Interrupted Dienoic Fatty Acids in Several Marine Invertebrates as Part of Food Web Studies, Lipids, 1977, vol. 12, pp. 170–176.

    Article  PubMed  CAS  Google Scholar 

  32. Klingensmith, J.S., Distribution of Methylene and Nonmethylene-Interrupted Dienoic Fatty Acids in Polar Lipids and Triacylglycerols of Selected Tissues of the Hardshell Clam (Mercenaria mercenaria), Lipids, 1982, vol. 17, pp. 976–981.

    Article  CAS  Google Scholar 

  33. Gillis, T.E. and Ballantyne, J.S., Influences of Subzero Thermal Acclimation on Mitochondrial Membrane Composition of Temperate Zone Marine Bivale Molluscs, Lipids, 1999, vol. 34, pp. 59–66.

    Article  PubMed  CAS  Google Scholar 

  34. Shulman, G.E. and Yuneva, T.V., Role of Docosahexaenic Acid in Fish Adaptation (a Review), Gidrobiol. Zh., 1990, vol. 26, pp. 43–51.

    CAS  Google Scholar 

  35. Tocher, D.R., Metabolism and Functions of Lipids and Fatty Acids in Teleost Fish, Rev. Fisher. Sci., 2005, vol. 11, pp. 107–184.

    Article  Google Scholar 

  36. Ackman, R.G., Epstein, S., and Kelleher, M., A Composition of Lipids and Fatty Acids of the Ocean Quahaug, Arctica islandica, from Nova Scotia and New Brunswick, J. Fish. Res. Board Can., 1974, vol. 11, pp. 1803–1811.

    Google Scholar 

  37. Pollero, R.T., Remaria, E., and Brenner, R.R., Seasonal Changes of the Lipids of the Mollusc Chlamys tehuelcha, Comp. Biochem. Physiol., 1979, vol. 64A, pp. 257–263.

    Article  CAS  Google Scholar 

  38. Zhukova, N.V. and Aizdaicher, N.A., Fatty Acid Composition of 15 Species of Microlagae, Phytochemistry, 1995, vol. 39, pp. 351–356.

    Article  CAS  Google Scholar 

  39. Khardin, A.S., Aizdaicher, N.A., and Latyshev, N.A., Changes in Fatty Acid Composition of the Mollusc Mytilus edulis Associated with Feeding with Microalgae, Vregional’naya konferentsiya po aktual’nym problemam ekologii, morskoi biologii i biotekhnologii (V Regional Conference on Actual Problems of Ecology, Marine Biology, and Biotechnology), Abstracts, Vladivostok, 2002, pp. 119–121.

    Google Scholar 

  40. Romashina, N.A., Marine Invertebrates as a Source of Eicosapentaenic and Other Polyenic Acids, Biol. Morya, 1983, no. 3, pp. 66–68.

  41. Pravdina, N.I., Significance of Fatty Acid Radicals in Structural Heterogeneity and Metabolism of Phospholipids, Usp. Sovr. Biol., 1975, vol. 79, pp. 205–224.

    PubMed  CAS  Google Scholar 

  42. Gershanovich, A.D., Lapin, V.I., and Shatunovskii, M.I., Peculiarities of Lipid Metabolism in Fish, Usp. Sovr. Biol., 1991, vol. 111, pp. 207–219.

    CAS  Google Scholar 

  43. Nikolaev, K.E., Spatial Structure and Seasonal Dynamics of Hemipopulation of Metacercarias Himasthla elongate—a Parasite of the White Sea Mussel (Mytilus edulis). Preliminary Analysis, Vestn. SPbGU, ser. 3, 2002, vol. 4, no. 27, pp. 30–33.

    Google Scholar 

  44. Bakhmetl, N., Berger, V.Ja., and Khalaman, V.V., The Effect of Salinity Change on the Heart Rate of Mytilus edulis L. Specimens from Different Ecological Zones, J. Exp. Marine Biol. Ecol., 2005, vol. 318, pp. 121–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N. N. Fokina, Z. A. Nefedova, N. N. Nemova, and V. V. Khalaman, 2007, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2007, Vol. 43, No. 4, pp. 317–323.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fokina, N.N., Nefedova, Z.A., Nemova, N.N. et al. Modulating role of lipids and their fatty acids in adaptation of the White Sea mussels Mytilus edulis L. to environmental salinity change. J Evol Biochem Phys 43, 379–387 (2007). https://doi.org/10.1134/S0022093007030023

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093007030023

Key words

Navigation