Skip to main content
Log in

NUMERICAL SIMULATION OF ENRICHMENT OF THE AIR–HELIUM MIXTURE WITH A BIFUNCTIONAL SORBENT BASED ON GLASS MICROSPHERES

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A hyperbolic character of the convective part of the flow of an air–helium mixture through a granulated sorbent layer with allowance for the Forchheimer filtration is demonstrated. A numerical model of a one-dimensional flow of the air–helium mixture through an adsorber filled by a granulated sorbent with due allowance for air and helium diffusion inward cylindrical granules and helium confinement in microspheres is developed. Within the framework of this model, verification of a numerical algorithm in problems of gas filtration through a porous medium and propagation of a pressure wave formed by the incident shock wave over a gas medium is performed. Experimental and numerical data are obtained and are found to be in good agreement. The enrichment phase is modeled by the method of pressure swing adsorption with the use of a bifunctional sorbent based on microspheres. It is demonstrated that the mass fraction of helium in the air–helium mixture can be almost doubled (from 0.7 to 1.3%) with the helium extraction degree of 90.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. V. P. Fomichev, V. M. Fomin, L. N. Puzyrev, et al., “System and Method of Gas Mixture Separation," RF Patent No. 2291740, MPK B 01 D 69/12, B 01 D 61/00, B 01 D 53/22, No. 2005105093/15; Published February 24, 2005.

  2. V. M. Fomin, V. N. Zinovyev, I. V. Kazanin, et al., “Method of Separation of a Multispecies Vapor-Gas Mixture," RF Patent No. 2508156, MPK B 01 D 53/02, No. 2012118350; Published May 03, 2012.

  3. A. S. Vereshchagin, “Glass Balls for the Solar Gas," Nauka Perv. Ruk 5, 32–37 (2010).

    Google Scholar 

  4. V. N. Zinovyev, I. V. Kazanin, V. A. Lebiga, et al., “Experimental Determination of the Helium Permeability Coefficient of Hollow Microspherical Membranes," Teplofiz. Aeromekh. 25 (6), 855–864 (2018) [Thermophys. Aeromech. 25 (6), 823–831 (2018)].

    Article  ADS  Google Scholar 

  5. R. T. Tsugawa, I. Moen, P. E. Roberts, et al., “Permeation of Helium and Hydrogen from Glass-Microsphere Laser Targets," J. Appl. Phys. 47 (5), 1987–1993 (1976).

    Article  ADS  Google Scholar 

  6. Ya. Yu. Chernykh and S. N. Vereshchagin, “Investigation of Helium Permeability of a Narrow Fraction of Cenospheres of Energy Ashes," Zh. Sib. Feder. Univ., Ser. Khim. 4 (2), 137–147 (2011).

    Google Scholar 

  7. A. S. Vereshchagin, V. N. Zinovyev, V. M. Fomin, et al., “Estimation of the Permeability Coefficient of Microsphere Walls," Vestn. Novosib. Gos. Univ., Ser. Fiz. 5 (2), 8–16 (2010).

    Google Scholar 

  8. V. N. Zinovyev, I. V. Kazanin, V. A. Lebiga, et al., “Co-Extraction of Vapor and Helium from Natural Gas," Teplofiz. Aeromekh. 23 (5), 771–777 (2016) [Thermophys. Aeromech. 23 (5), 741–746 (2016)].

    Article  ADS  Google Scholar 

  9. A. S. Vereshchagin, I. V Kazanin, V. N. Zinovyev, et al., “Mathematical Model of Permeability of Microspheres with Allowance for their Size Distribution," Prikl. Mekh. Tekh. Fiz. 54 (2), 88–96 (2013) [J. Appl. Mech. Tech. Phys. 54 (2), 243–250 (2013)].

    Article  ADS  MATH  Google Scholar 

  10. I. V. Kazanin, V. N. Zinovyev, A. Yu. Pak, et al., “Permeability of Hollow Microspherical Membranes with Respect to Helium," Inzh.-Fiz. Zh. 89 (1), 24–36 (2016).

    Google Scholar 

  11. A. S. Vereshchagin, V. M. Fomin, V. N. Zinovyev, et al., “Investigation of Helium Sorption by Microspheres and Composite Sorbent on their Basis," Prikl. Mekh. Tekh. Fiz. 62 (3), 60–70 (2021) [J. Appl. Mech. Tech. Phys. 62 (3), 401–410 (2021)].

    Article  ADS  MathSciNet  Google Scholar 

  12. V. G. Matveikin, V. A. Pogonin, S. B. Putin, et al., Mathematical Modeling and Control of the Process of Heatingless Pressure Swing Adsorption (Mashinostroenie-1, Moscow, 2007) [in Russian].

    Google Scholar 

  13. A. S. Vereshchagin, S. N. Vereshchagin, and V. M. Fomin, “Mathematical Modeling of the Motion of a Portion of Helium under Pulsed Injection over a Fixed Bed of Cenospheres," Prikl. Mekh. Tekh. Fiz. 48 (3), 92–102 (2007) [J. Appl. Mech. Tech. Phys. 48 (3), 375–384 (2007)].

    Article  ADS  MATH  Google Scholar 

  14. R. M. Barrer, Diffusion In and Through Solids (Cambridge Univ. Press, Cambridge, 1951). (Cambridge Ser. Phys. Chem.)

    Google Scholar 

  15. V. O. Altemose, “Helium Diffusion through Glass," J. Appl. Phys. 32 (7), 1309–1316 (1961).

    Article  ADS  Google Scholar 

  16. Yu. I. Dytnerskii, V. P. Brykov, and G. G. Kagramanov, Membrane Separation of Gases (Khimiya, Moscow, 1991) [in Russian].

    Google Scholar 

  17. A. S. Vereshchagin, V. N. Zinovyev, and I. V. Kazanin, “Model of Helium and Water Vapor Adsorption by a Porous Composite Sorbent Based on Microspheres," Dokl. Akad. Nauk, Fiz. Tekh. Nauki 490 (1), 18–23 (2020).

    Google Scholar 

  18. A. S. Vereshchagin, “Accounting for Resistance and Temperature in a Flow of a Vapor–Helium Mixture through a Layer of a Porous Composite Sorbent Based on Microspheres," Prikl. Mekh. Tekh. Fiz. 62 (2), 77–87 (2021) [J. Appl. Mech. Tech. Phys. 62 (2), 245–254 (2021)].

    Article  ADS  MathSciNet  Google Scholar 

  19. N. V. Kel’tsev, Fundamentals of Adsorption Engineering (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  20. I. F. Golubev, Viscosity of Gases and Gas Mixtures (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  21. C. R. Wilke, “A Viscosity Equation for Gas Mixtures," J. Chem. Phys. 18 (4), 517–519 (1950).

    Article  ADS  Google Scholar 

  22. V. M. Kovenya, Difference Methods of Solving Multidimensional Problems: Course of Lectures (Novosibirsk State University, Novosibirsk, 2004) [in Russian].

    Google Scholar 

  23. I. V. Kazanin, V. N. Zinovyev, V. A. Lebiga, et al., “Determination of Transport Characteristics of Granulated Sorbents in Adsorber," AIP Conf. Proc. 1939, 020029 (2018).

  24. K. S. Basniev, N. M. Dmitriev, and G. D. Rosenberg, Oil and Gas Hydromechanics: Tutorial for Higher Education Institutes (Inst. Comp. Research, Moscow–Izhevsk, 2005) [in Russian].

    Google Scholar 

  25. I. V. Kazanin, V. N. Zinoviev, A. S. Vereshchagin, et al., “Interaction of a Shock Wave with Selectively Sorbing Granulated Media," AIP Conf. Proc. 2351, 040014(7) (2021).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Vereshchagin.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 63, No. 5, pp. 3-19. https://doi.org/10.15372/PMTF20220501.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vereshchagin, A.S., Kazanin, I.V., Zinovyev, V.N. et al. NUMERICAL SIMULATION OF ENRICHMENT OF THE AIR–HELIUM MIXTURE WITH A BIFUNCTIONAL SORBENT BASED ON GLASS MICROSPHERES. J Appl Mech Tech Phy 63, 731–745 (2022). https://doi.org/10.1134/S0021894422050017

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894422050017

Keywords

Navigation