Skip to main content
Log in

Modeling of Structural Damage Evolution in Dispersion-Filled Elastomeric Nanocomposites with Regard for Interfacial Interaction

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Computer modeling of internal damage evolution in elastomeric nanocomposites with high structural phase inhomogeneity (hard dispersed filler and soft elastomeric matrix) has been carried out. The concentration of filler particles was chosen to be sufficiently high, so that their mutual interaction affected significantly the strength properties of the material. Dispersed inclusions were assumed to be absolutely rigid and durable. Only a finitely deform able incompressible matrix (the mechanical properties of which were set using the neo-Hookean elastic potential) could be damaged. The model takes into account the following specific features of the composite structure: a high stress concentration in the gaps between closely located inclusions, the presence of elastomeric layers with increased stiffness on the surface of filler particles, different interphase contact conditions (full adhesion or slip at the matrix–inclusion interface), and the possibility of anisotropic hardening during uniaxial stretching (due to the reorientation of molecular chains in the elongation direction). The latter factor made it possible to study theoretically the mechanism of formation of high-strength microstrands in the gaps between adjacent particles. The occurrence of such formations in filled elastomers, which was observed in numerous experiments, is a proven fact. A new (anisotropic) fracture criterion has been developed to describe it, because this phenomenon cannot be simulated within the generally accepted strength criteria. The calculations based on this new approach showed that local matrix discontinuities occur not in the gaps between particles (sites of highest stress concentration) but at a certain distance, forming a hollow ring (microstrand) around it. The link between neighboring inclusions is not violated, and the material retains its load-carrying capacity at the macrolevel. Thus, the presence of microstrands is a possible reason for hardening an elastomer when a hard dispersed filler is introduced into it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Mark, J.E., Erman, B., and Roland, M., The Science and Technology of Rubber, 4th ed., Amsterdam: Elsevier, 2013. https://doi.org/10.1016/C2011-0-05820-9

  2. Jovanović, V., Smaržija-Jovanović, S., Budinski-Simendić, J., Marković, G., and Marinović-Cincović, M., Composites based on carbon black reinforced NBR/EPDM rubber blends, Composites, Part B, 2013, vol. 45, pp. 333–340. https://doi.org/10.1016/j.compositesb.2012.05.020

    Article  Google Scholar 

  3. Salaeh, S. and Nakason, C., Influence of modified natural rubber and structure of carbon black on properties of natural rubber compounds, Polym. Compos., 2012, vol. 33, pp. 489–500. https://doi.org/10.1002/pc.22169

    Article  Google Scholar 

  4. Shakun, A., Vuorinen, J., Hoikanen, M., Poikelispaa, M., and Das, A., Hard nanodiamonds in soft rubbers: Past, present and future, a review, Composites, Part A, 2014, vol. 64, pp. 49–69. https://doi.org/10.1016/j.compositesa.2014.04.014

    Article  Google Scholar 

  5. Le, H.H., Pham, T., Henning, S., Klehm, J., Wießner, S., Stöckelhuber, S., Das, A., Hoang, X.T., Do, Q.K., Wu, M., Vennemann, N., Heinrich, G., and Radusch, H.-J., Formation and stability of carbon nanotube network in natural rubber: Effect of non-rubber components, Polymer, 2015, vol. 73, pp. 111–121. https://doi.org/10.1016/j.polymer.2015.07.044

    Article  Google Scholar 

  6. Lu, Y., Liu, J., Hou, G., Ma, J., Wang, W., Wei, F., and Zhang, L., From nano to giant? Designing carbon nanotubes for rubber reinforcement and their applications for high performance tires, Compos. Sci. Technol., 2016, vol. 137, pp. 94–101. https://doi.org/10.1016/j.compscitech.2016.10.020

    Article  Google Scholar 

  7. Mokhireva, K.A., Svistkov, A.L., Solod’ko, V.N., Komar, L.A., and Stockelhuber, K.W., Experimental analysis of the effect of carbon nanoparticles with different geometry on the appearance of anisotropy of mechanical properties in elastomeric composites, Polym. Test., 2017, vol. 59, pp. 46–54. https://doi.org/10.1016/j.polymertesting.2017.01.007

    Article  Google Scholar 

  8. Liu, H., Bai, H., Bai, D., Liu, Z., Zhang, Q., and Fu, Q., Design of high-performance poly(L-lactide)/elastomer blends through anchoring carbon nanotubes at the interface with the aid of stereo-complex crystallization, Polymer, 2017, vol. 108, pp. 38–49. https://doi.org/10.1016/j.polymer.2016.11.034

    Article  Google Scholar 

  9. Garishin, O.K., Structural mechanical model of a grain composite with a damageable rubbery matrix, Polym. Sci., Ser. A, 2002, vol. 44, no. 4, pp. 417–423

    Google Scholar 

  10. Garishin, O.K. and Moshev, V.V., Damage model of elastic rubber particulate composites, Theor. Appl. Fract. Mech., 2002, vol. 38, pp. 63–69. https://doi.org/10.1016/S0167-8442(02)00081-2

    Article  Google Scholar 

  11. Garishin, O.K. and Moshev, V.V., Structural rearrangement in dispersion-filled composites: Influence on mechanical properties, Polym. Sci., Ser. A, 2005, vol. 47, no. 4, pp. 403–408.

    Google Scholar 

  12. Reese, S., A micromechanically motivated material model for the thermo-viscoelastic material behaviour of rubber-like polymers, Int. J. Plast., 2003, vol. 19, pp. 909–940. https://doi.org/10.1016/S0749-6419(02)00086-4

    Article  MATH  Google Scholar 

  13. Österlöf, R., Wentzel, H., and Kari, L., An efficient method for obtaining the hyperelastic properties of filled elastomers in finite strain applications, Polym. Test., 2015, vol. 41, pp. 44–54. https://doi.org/10.1016/j.polymertesting.2014.10.008

    Article  Google Scholar 

  14. Ivaneiko, I., Toshchevikov, V., Saphiannikova, M., Stöckelhuber, K.W., Petry, F., Westermann, S., and Heinrich, G., Modeling of dynamic-mechanical behavior of reinforced elastomers using a multiscale approach, Polymer, 2016, vol. 82, pp. 356–365. https://doi.org/10.1016/j.polymer.2015.11.039

    Article  Google Scholar 

  15. Raghunath, R., Juhre, D., and Kluppel, M., A physically motivated model for filled elastomers including strain rate and amplitude dependency in finite viscoelasticity, Int. J. Plast., 2016, vol. 78, pp. 223–241. https://doi.org/10.1016/j.ijplas.2015.11.005

    Article  Google Scholar 

  16. Plagge, J. and Klüppel, M., A physically based model of stress softening and hysteresis of filled rubber including rate- and temperature dependency, Int. J. Plast., 2017, vol. 89, pp. 173–196. https://doi.org/10.1016/j.ijplas.2016.11.010

    Article  Google Scholar 

  17. Erofeev, V.I. and Pavlov, I.S., Strukturnoe modelirovanie metamaterialov (Structural Modeling of Metamaterials), Nizh. Novgorod: IPF RAN, 2019.

  18. Mullins, L., Effect of stretching in the properties of rubber, Rubber Chem. Technol., 1948, vol. 21, no. 2, pp. 281–300. https://doi.org/10.5254/1.3546914

    Article  Google Scholar 

  19. Mullins, L., Engineering with rubber, Rubber Chem. Technol., 1986, vol. 59, no. 3, pp. 69–83. https://doi.org/10.5254/1.3538214

    Article  Google Scholar 

  20. Pechkovskaya, K.A., Sazha kak usilitel’ kauchuka (Carbon Black as a Rubber Amplifier), Moscow: Khimiya, 1968.

  21. Kraus, G., Reinforcement of elastomers by carbon black, Rubber Chem. Technol., 1978, vol. 51, no. 2, pp. 297–321. https://doi.org/10.5254/1.3545836

    Article  Google Scholar 

  22. Fetterman, M.Q., The unique properties of precipitated silica in the design of high performance rubber, Elastomerics, 1984, vol. 116, no. 9, pp. 18–31.

    Google Scholar 

  23. Shadrin, V.V., Investigation of strength of elastomeric fibers, depending on their diameter, Mekh. Kompoz. Mater. Konstrukts., 2003, vol. 9, no. 2, pp. 198–204.

    Google Scholar 

  24. Leonov, A.I., The effect of surface tension on stretching of very thin highly elastic filaments, J. Rheol., 1990, vol. 34, pp. 155–167. https://doi.org/10.1122/1.550117

    Article  ADS  MATH  Google Scholar 

  25. Garishin, O.K. and Komar, L.A., Prediction strength elastomeric granular composite according to the particle size of the filler, Mekh. Kompoz. Mater. Konstrukts., 2003, vol. 9, no. 3, pp. 278–286.

    Google Scholar 

  26. Le Cam, J.-B., Huneau, B., Verron, E., and Gornet, L., Mechanism of fatigue crack growth in carbon black filled natural rubber, Macromolecules, 2004, vol. 37, pp. 5011–5017. https://doi.org/10.1021/ma0495386

    Article  ADS  Google Scholar 

  27. Watabe, H., Komura, M., Nakajima, K., and Nishi, T., Atomic force microscopy of mechanical property of natural rubber, Jpn. J. Appl. Phys., 2005, vol. 44, pp. 5393–5396. https://doi.org/10.1143%2Fjjap.44.5393

    Article  ADS  Google Scholar 

  28. Beurrot, S., Huneau, B., and Verron, E., In situ SEM study of fatigue crack growth mechanism in carbon black-filled natural rubber, J. Appl. Polymer Sci., 2010, vol. 117, pp. 1260–1269. https://doi.org/10.1002/app.31707

    Article  Google Scholar 

  29. Dohi, H., Kimura, H., Kotani, M., Kaneko, T., Kitaoka, T., Nishi, T., and Jinnai, H., Three-dimensional imaging in polymer science: Its application to block copolymer morphologies and rubber composites, Polym. J., 2007, vol. 39, pp. 749–758. https://doi.org/10.1295/polymj.PJ2006259

    Article  Google Scholar 

  30. Morozov, I.A., Structural-mechanical AFM study of surface defects in natural rubber vulcanizates, Macromolecules, 2016, vol. 49, no. 16, pp. 5985–5992. https://doi.org/10.1021/acs.macromol.6b01309

    Article  ADS  Google Scholar 

  31. Toki, S., Sics, I., Ran, S., Liu, L., and Hsiao, B.S., Molecular orientation and structural development in vulcanized polyisoprene rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction, Polymer, 2003, vol. 44, pp. 6003–6011. https://doi.org/10.1016/S0032-3861(03)00548-2

    Article  Google Scholar 

  32. Toki, S., Sics, I., Hsiao, B.S., Murakami, S., Tosaka, M., Poompradub, S., Kohjiya, S., and Ikeda, Y., Structural developments in synthetic rubbers during uniaxial deformation by in situ synchrotron Khray diffraction, J. Polym. Sci., B, 2004, vol. 42, pp. 956–964. https://doi.org/10.1002/polb.10679

    Article  Google Scholar 

  33. Rault, J., Marchal, J., Judeinstein, R., and Albouy, R.A., Chain orientation in natural rubber, Part II: 2H-NMR study, Eur. Phys. J. E, 2006, vol. 21, pp. 243–261. https://doi.org/10.1140/epje/i2006-10064-6

    Article  Google Scholar 

  34. Svistkov, A.L., A continuum-molecular model of oriented polymer region formation in elastomer nanocomposite, Mech. Solids, 2010, vol. 45, pp. 562–574. https://doi.org/10.3103/S0025654410040060

    Article  ADS  Google Scholar 

  35. Hamed, G.R. and Hatfeld, S., On the role of bound rubber in carbon-black reinforcement, Rubber Chem. Technol., 1989, vol. 62, no. 1, pp. 143–156. https://doi.org/10.5254/1.3536231

    Article  Google Scholar 

  36. Wolff, S., Wang M.-J., and Tan, E.N., Filler-elastomer interactions. Part VII. Study on bound rubber, Rubber Chem. Technol., 1993, vol. 66, no. 2, pp. 163–177. https://doi.org/10.5254/1.3538304

    Article  Google Scholar 

  37. Meissner, B., Bound rubber and elastomer-flller interaction, Rubber Chem. Technol., 1995, vol. 68, no. 2, pp. 297–310. https://doi.org/10.5254/1.3538744

    Article  Google Scholar 

  38. Choi, S.-S., Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber, Polym. Adv. Technol., 2002, vol. 13, pp. 466–474. https://doi.org/10.1002/pat.211

    Article  Google Scholar 

  39. Choi, S.-S., Effect of bound rubber on characteristics of highly filled styrene-butadiene rubber compounds with different types of carbon black, J. Appl. Polym. Sci., 2004, vol. 93, pp. 1001–1006. https://doi.org/10.1002/app.20567

    Article  Google Scholar 

  40. Choi, S.-S., Hwang, K.-J., and Kim, V.-T., Influence of bound polymer on cure characteristics of natural rubber compounds reinforced with different types of carbon blacks, J. Appl. Polym. Sci., 2005, vol. 98, pp. 2282–2289. https://doi.org/10.1002/app.22287

    Article  Google Scholar 

  41. Leblanc, J.L., A molecular explanation for the origin of bound rubber in carbon black filled rubber compounds, J. Appl. Polym. Sci., 1997, vol. 66, pp. 2257–2268. https://doi.org/10.1002/(SICI)1097-4628(19971219)66:12%3C2257::AID-APP7%3E3.0.CO;2-F

    Article  Google Scholar 

  42. Leblanc, J.L., Elastomer-filler interactions and the rheology of filled rubber compounds, J. Appl. Polym. Sci., 2000, vol. 78, pp. 1541–1550. https://doi.org/10.1002/(SICI)1097-4628(19971219)66:12<2257::AID-APP7>3.0.CO;2-F

    Article  Google Scholar 

  43. Fukahori, Y., The mechanics and mechanism of the carbon black reinforcement of elastomers, Rubber Chem. Technol., 2003, vol. 76, no. 2, pp. 548-565. https://doi.org/10.5254/1.3547760

    Article  Google Scholar 

  44. Litvinov, Y.M. and Steeman, R.A.M., EPDM – carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1 H NMR, Macromolecules, 1999, vol. 32, pp. 8476–8490. https://doi.org/10.1021/ma9910080

    Article  ADS  Google Scholar 

  45. Berriot, J., Lequeux, E., Monnerie, L., Montes, N., Long, D., and Sotta, R., Filler-elastomer interaction in model fllled rubbers, a 1 H NMR study, J. Non-Cryst. Solids, 2002, vols. 307–310, pp. 719–724. https://doi.org/10.1016/S0022-3093(02)01552-1

    Article  ADS  Google Scholar 

  46. Leu, G., Liu, Y., Werstler, D.D., and Cory, D.G., NMR characterization of elastomer-carbon black interactions, Macromolecules, 2004, vol. 37, pp. 6883–6891. https://doi.org/10.1021/ma0493628

    Article  ADS  Google Scholar 

  47. Zgayevskiy, V.E. and Yanovskii, Yu.G., Dependence of the viscoelastic properties of composites with a highly elastic matrix and rigid filler particles on the molecular and structural parameters of the interfacial layer, Mekh. Kompoz. Mater. Konstrukts., 1998, vol. 4, no. 3, pp. 124–135.

    Google Scholar 

  48. Vlasov, A.N., Zgayevskiy, V.E., Karnet, Yu.N., Teplukhina, E.I., and Yanovskii,Yu.G., Elastic properties of a polymer composite taking into account the molecular and structural parameters of the interfacial layer, Mekh. Kompoz. Mater. Konstrukts., 2000, vol. 6, no. 1, pp. 141–150.

    Google Scholar 

  49. Yanovskii, Yu.G. and Zgaevskii, V.E., Hierarchical modeling of the mechanical behavior and properties of heterogeneous media, Fiz. Mezomekh., 2001, vol. 4, no. 3, pp. 63–71.

    Google Scholar 

  50. Stuart, S.J., Tutein, A.V., and Harrison, J.A., A reactive potential for hydrocarbons with intermolecular interactions, J. Chem. Phys., 2000, vol. 112, pp. 6472–6486. https://doi.org/10.1063/1.481208

    Article  ADS  Google Scholar 

  51. Gamlitsky, Yu.A. and Shvachich, M.V., Rubber strength. Model and calculation, Polymer Sci., Ser. A, 2005, vol. 47, no. 4, pp. 396–402. https://doi.org/10.1016/j.ijsolstr.2008.12.025

    Article  Google Scholar 

  52. Cantournet, S., Desmorat, R., and Besson, J., Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model, Int. J. Solid. Struct., 2009, vol. 46, pp. 2255–2264. https://doi.org/10.1016/j.ijsolstr.2008.12.025

    Article  MATH  Google Scholar 

  53. Sokolov, A.K., Garishin, O.K., and Svistkov, A.L., A new hypothesis on the mechanism of nanofilled elastomers reinforcement, Mech. Adv. Mater. Mod. Process., 2018, vol. 4, p. 7. https://doi.org/10.1186/s40759-018-0040-x

    Article  Google Scholar 

  54. Garishin, O.K., Mekhanicheskie svoistva i razrushenie dispersno napolnennykh elastomerov. Strukturnoe modelirovanie (Mechanical Properties and Destruction of Dispersively Filled Elastomers. Structural Modeling), Saarbrücken: Palmarium Academic, 2012.

  55. Kondyurin, A.V., Eliseeva, A.Yu., and Svistkov, A.L., Bound (“glassy”) rubber as a free radical cross-linked rubber layer on a carbon black, Materials, 2018, vol. 11, no. 10. https://doi.org/10.3390/ma11101992

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-08-00725_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. K. Sokolov, O. K. Garishin or A. L. Svistkov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolov, A.K., Garishin, O.K. & Svistkov, A.L. Modeling of Structural Damage Evolution in Dispersion-Filled Elastomeric Nanocomposites with Regard for Interfacial Interaction. J Appl Mech Tech Phy 61, 1216–1226 (2020). https://doi.org/10.1134/S0021894420070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420070135

Keywords:

Navigation