Skip to main content
Log in

MODEL OF POLYMORPHIC TRANSFORMATION IN A SHOCK WAVE. 1. CARBON

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This paper presents a model describing polymorphic phase transition in a shock wave based on experimental data on shock compression of a material. It is assumed that the phase transition in a non-porous material is of martensitic type and occurs in a stationary shock wave that arises in the immediate vicinity behind the first shock wave. Conditions for the occurrence of this shock wave are determined. The model has been tested for non-porous pyrolytic graphite. It has been shown that the model adequately describes the experimental results obtained in various studies for this type of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. L. V. Al’tshuler, “Phase Transitions in Shock Waves (Review)," Prikl. Mekh. Tekh. Fiz. 19 (4), 93–103 (1978) [J. Appl. Mech. Tech. Phys. 19 (4), 496–505 (1978)].

  2. G. E. Duvall and R. A. Graham, “Phase Transitions under Shock-Wave Loading," Rev. Modern Phys. 49 (3), 523–579 (1977).

  3. F. P Bundy, W. A. Basset, M. S. Weathers, et al., “The Pressure-Temperature Phase and Transformation Diagram for Carbon; Updated Through 1994," Carbon 34 (2), 141–153 (1996).

  4. E. Vlodarchik and R. Trebinski, “Transformations of Graphite and Boron Nitride in Shock Waves," Shock Waves, No. 7, 231–248 (1997).

  5. A. V. Kurdyumov and A. N. Pilyankevich, Phase Transformations in Carbon and Boron Nitride (Naukova Dumka, Kiev, 1979) [in Russian].

  6. A. Z. Zhuk, A. V. Ivanov, and G. I. Kanel’, “Kinetics of the Graphite–Diamond Phase Transition," Teplofiz. Vys. Temp.29 (3), 486–493 (1991).

  7. A. B. Kurdyumov, V. F. Britun, N. I. Borimerchuk, V. V. Yarosh, and A. V. Kurdyumov, Martensitic and Diffusion Transformations in Carbon and Boron Nitride under Shock Compression (Izd. Kupriyanova, Kiev, 2005) [in Russian].

  8. R. G. McQueen and S. P. Marsh, “Hugoniots of Graphites of Various Initial Densities and the Equation of State of Carbon," inBehavior of Dense Media under High Dynamic Pressures: Proc. of the Symp. on the Behavior of Dense Media under High Dynamic Pressures, September 1967 (Gordon and Breach, New York, 1968), pp. 207–216.

  9. H. W. Gust, “Phase Transition and Shock-Compression Parameters to 120 GPa for Three Types of Graphite and for Amorphous Carbon," Phys. Rev. B 22 (6), 4744–4749 (1980).

  10. A. V. Anan’in, A. N. Dremin, G. I. Kanel’, and S. V. Pershin, “Investigation of the Structure of Shock Waves in Boron Nitride and Graphite in the Region of Polymorphous Transformations," Prikl. Mekh. Tekh. Fiz. 19 (3), 112–117 (1978) [J. Appl. Mech. Tech. Phys. 19 (3), 372–376 (1978).

  11. M. F. Gogulya, D. G. Batukhtin, and I. M. Voskoboinikov, “On the Relaxation Attenuation and Splitting of Shock Waves in Natural Graphite," Pis’ma Zh. Tekh. Fiz. 13, 786–789 (1987).

  12. M. N. Kravchenko, “Rates of the Graphite–Diamond Phase Transition," in Study of the Properties of Matter under Extreme Conditions. (Institute of High Temperatures, USSR Academy of Sciences, Moscow, 1990), pp. 206–209 [in Russian].

  13. L. V. Al’tshuler, “Application of Shock Waves in High-Pressure Physics," Usp. Fiz. Nauk 85 (2), 197–258 (1965).

  14. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966) [in Russian].

  15. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, “Shock Waves in Condensed-State Physics," Usp. Fiz. Nauk 177 (8), 809–830 (2007).

  16. D. J. Erskine and W. J. Nellis, “Shock-Induced Martensitic Transformation of Highly Oriented Graphite to Diamond," J. Appl. Phys. 71 (10), 4882–4886 (1992).

  17. M. F. Gogulya, “Shock Structure and Parameters under Dynamic Loading of Natural Graphite in the Polymorphic Transformation Domain," Fiz. Goreniya Vzryva 25 (1), 95–104 (1989) [Combust., Expl. Shock Waves 25 (1), 87–95 (1989).

  18. A. V. Kurdyumov, V. F. Degtyarev, E. G. Ponyatovskii, et al.,Effect of High Pressures on Matter (Naukova Dumka, Kiev, 1987), Vol. 1 [in Russian].

  19. T. R. Balan, I. I. Vorimchuk, A. V. Bochko, et al.,Detonation and Shock Waves (Joint Institute of Chemical Physics, USSR Academy of Sciences, Chernogolovka, 1986) [in Russian].

  20. A. A. Charakhch’yan, V. V. Milyavskii, and K. V. Khishchenko, “The Use of Models of Mixture for Analysis of Shock-Wave Experiments with Incomplete Phase Transformation," Teplofiz. Vys. Temp.47 (2), 254–261 (2009).

  21. V. B. Rozanov and M. A. Rumyantseva, “Equation of State for Carbon in Problems of Shock Compression of Graphite-Like and Diamond-Like Phases at a Pressure of \({\sim}1\) mbar," Krat. Soobshch. Fiz. FIAN, Nos. 3/4, 9–24 (1997) [in Russian].

  22. V. V. Prut, “Simulation of the Graphite–Diamond Transition in an Isentropic Process," Zh. Tekhn. Fiz. 87 (5), 700–709 (2017).

  23. V. N. Zharkov and V. A. Kalinin, Equations of State of Solids at High Pressures and Temperatures (Nauka, Moscow, 1968) [in Russian].

  24. T. S. Sokolova and P. I. Dorogokupets, “Equations of State and Thermodynamic Functions of Layered Minerals," in Modern Problems of Geochemistry, Proc. All-Russian Conf., Irkutsk (Russia), October 22–26, 2012 (Inst. of Geography, SB RAS, Irkutsk, 2012), pp. 251–254.

  25. D. K. Bradley, J. H. Eggert, R. F. Smith, et al., “Diamond at 800 GPa," Phys. Rev. Lett. 102, 075503 (2009).

  26. M. van Thiel and F. H. Ree, “Theoretical Description of the Graphite, Diamond, and Liquid Phases of Carbon," Int. J. Thermophys. 10 (1), 227–236 (1989).

  27. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock-Wave Compression and Adiabatic Expansion of Condensed Materials (All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center, Sarov, 2001) [in Russian].

  28. N. L. Coleburn, “The Compressibility of Pyrolytic Graphite," J. Chem. Phys. 40 (1), 71–77 (1964).

  29. W. J. Nellis, A. C. Mitchell, and A. K. McMahan, “Carbon at Pressures in the Range 0.1–1 TPa (10 Mbar)," J. Appl. Phys.90 (2), 696–698 (2001).

  30. Electronic Database of Shock-Wave Experiments;http: www.ihed.ras.ru/rusbank/catsearch.php.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kinelovskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinelovskii, S.A. MODEL OF POLYMORPHIC TRANSFORMATION IN A SHOCK WAVE. 1. CARBON. J Appl Mech Tech Phy 61, 623–631 (2020). https://doi.org/10.1134/S0021894420040161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894420040161

Keywords

Navigation