Skip to main content
Log in

Penetration of Steel Projectiles through Finite-Thickness Ice Targets

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

A single-stage gas-driven setup is developed, which allows 0.5-kg projectiles to be accelerated to velocities of the order of 1200 m/s. Experiments with penetration of steel projectiles into a massive ice target are performed. The experimental data are compared with the results of computations performed by the REACTOR software system and numerical calculations of destruction of a finite-thickness ice target under the impact of one projectile and several projectiles. It is demonstrated that an impact of a steel ring onto a finite-thickness ice target leads to knock-out of the maximum volume of ice and almost complete loss of the kinetic energy of the ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Millot, S. Hamel, J. R. Rygg, et al., “Experimental Evidence for Superionic Water Ice Using Shock Compression,” Nature Phys. 14, 297–302 (2018).

    Article  ADS  Google Scholar 

  2. E. S. Gaffney, “Hugoniot of Water Ice,” in Ices in the Solar System (Springer, Dordrecht, 1985), pp. 119–148.

    Chapter  Google Scholar 

  3. S. T. Stewart and T. J. Ahrens, “Shock Hugoniot of H2O Ice,” Geophys. Res. Lett. 30 (6), 1332 (2003).

    Article  ADS  Google Scholar 

  4. S. T. Stewart and T. J. Ahrens, “Shock Properties of H2O Ice,” J. Geophys. Res.: Planets 110, E03005 (2005).

    Article  ADS  Google Scholar 

  5. V. V. Balandin, S. V. Krylov, E. Yu. Poverennov, and V. V. Sadovskii, “Numerical Simulation of Shock Interaction of an Elastic Cylinder with Ice,” Probl. Pochn. Plastichn. 79 (1), 93–103 (2017).

    Google Scholar 

  6. V. P. Glazyrin, “Shock and Explosive Loading of Ice,” Izv. Vyssh. Uchebn. Zaved., Fiz. 50 (9/2), 60–64 (2007).

    Google Scholar 

  7. A. V. Gerasimov and S. V. Pashkov, “Numerical Simulation of the 3D Process of Projectile Penetration into Ice,” Mat. Model., Kraevye Zadachi, Part 1, 96–08 (2008).

    Google Scholar 

  8. Yu. N. Orlova and V. P. Glazyrin, “Mathematical Modeling of Penetration of a Cylindrical Projectile into Thin Ice,” Tr. Tomsk. Gos. Univ., Ser. Fiz.-Mat. 276, 56–59 (2010).

    Google Scholar 

  9. V. A. Lobanov, “Modeling of Ice Interaction with Structures,” Vestn. Nauch.-Tekh. Razv., No. 10, 31–39 (2011).

    Google Scholar 

  10. E. I. Kraus and I. I. Shabalin, “Reactor2D: A Tool for Simulation of Shock Deformation,” AIP Conf. Proc. 1770, 030092 (2016).

    Article  Google Scholar 

  11. E. I. Kraus and I. I. Shabalin, “The Tool for High-Velocity Interaction and Damage of Solids,” Math. Montisnigri 39, 18–29 (2017).

    MathSciNet  Google Scholar 

  12. V. M. Fomin, A. I. Gulidov, G. A. Sapozhnikov, et al., in High-Velocity Interaction of Solids (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  13. E. I. Kraus, V. M. Fomin, and I. I. Shabalin, “Model Equations of Thermodynamic Functions of State of Matter. 1. Solids” Fiz. Mezomekh. 7, 285–288 (2004).

    Google Scholar 

  14. M. L. Wilkins, Computer Simulation of Dynamic Phenomena (Springer, Berlin-Heidelberg-New York, 1999).

    Book  MATH  Google Scholar 

  15. F. R. Tuler and B. M. Butcher, “A Criterion for the Time Dependence of Dynamic Fracture,” Int. J. Fracture Mech. 4 (4), 431–437 (1968).

    Article  Google Scholar 

  16. E. I. Kraus, I. I. Shabalin, and T. I. Shabalin, “Automatic Tetrahedral Mesh Generation for Impact Computations,” AIP Conf. Proc. 1893, 30129 (2017).

    Article  Google Scholar 

  17. E. I. Kraus, I. I. Shabalin, and T. I. Shabalin, “Numerical Analysis of Wave Propagation in a Cermet Composite,” AIP Conf. Proc. 1893 (1), 030130 (2017).

    Google Scholar 

  18. I. E. Khorev, S. A. Zelepugin, A. A. Konyaev, et al., “Destruction of Targets by a Group of High-Velocity Bodies,” Dokl. Akad. Nauk 369 (4), 481–485 (1999).

    Google Scholar 

  19. A. V. Gerasimov, V. N. Barashkov, and S. V. Pashkov, “Impact of a Group of Compact Elements onto a Thin Target,” Izv. Vyssh. Uchebn. Zaved., Fiz. 52 (7/2), 59–63 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shabalin.

Additional information

Original Russian Text © E.I. Kraus, A.Yu. Melnikov, V.M. Fomin, I.I. Shabalin.

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 60, No. 3, pp. 146–153, May–June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, E.I., Melnikov, A.Y., Fomin, V.M. et al. Penetration of Steel Projectiles through Finite-Thickness Ice Targets. J Appl Mech Tech Phy 60, 526–532 (2019). https://doi.org/10.1134/S0021894419030155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894419030155

Keywords

Navigation