Skip to main content
Log in

Quantum-Assisted Open-Pit Optimization

  • QUANTUM INFORMATICS
  • Published:
JETP Letters Aims and scope Submit manuscript

With the recent advances in experimental realization of multi-qubit systems the idea of delegating certain real-life optimization tasks to a quantum computer becomes viable. In particular, we herein examine a variational quantum algorithm applied to a three-dimensional problem of open-pit mining, where the core of the classical optimization loop is provided by the probabilistic tensor sampling method. The developed technique is challenged against conventional optimization routines subjected to the essential optimization issues in variational quantum algorithms such as barren plateaus and multiple local minima. We demonstrate that the probabilistic tensor train-based approach allows one to steadily identify the ground state of a given system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Preskill, Quantum 2, 79 (2018).

    Article  Google Scholar 

  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, 10th ed. (Cambridge Univ. Press, Cambridge, 2010).

    Google Scholar 

  3. H. J. Briegel, D. Browne, W. Dür, R. Raussendorf, and M. van den Nest, Nat. Phys. 5, 19 (2009).

    Article  Google Scholar 

  4. R. Raussendorf and T.-C. Wei, Ann. Rev. Condens. Matter Phys. 3, 239 (2012).

    Article  Google Scholar 

  5. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv: quant-ph/0001106 (2000).

  6. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev, arXiv: quant-ph/0405098 (2004).

  7. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature (London, U.K.) 549, 195 (2017).

    Article  ADS  Google Scholar 

  8. J. Biamonte, Phys. Rev. A 103, L030401 (2021).

  9. M. P. Harrigan, K. J. Sung, M. Neeley, et al., Nat. Phys. 17, 332 (2021).

    Article  Google Scholar 

  10. S. Ebadi, A. Keesling, M. Cain, et al., Science (Washington, DC, U.S.) 376, 1209 (2022).

    Article  ADS  Google Scholar 

  11. S. Yarkoni, E. Raponi, T. Bäck, and S. Schmitt, Rep. Prog. Phys. 85, 104001 (2022).

  12. M.-T. Nguyen, J.-G. Liu, J. Wurtz, M. D. Lukin, S.‑T. Wang, and H. Pichler, PRX Quantum 4, 010316 (2023).

  13. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.‑Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  14. E. Farhi, J. Goldstone, and S. Gutmann, arXiv: 1411.4028 (2014).

  15. N. Moll, P. Barkoutsos, L. S. Bishop, et al., Quantum Sci. Technol. 3, 030503 (2018).

  16. Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferova, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya, S. Sim, L. Veis, and A. Aspuru-Guzik, Chem. Rev. 119, 10856 (2019).

    Article  Google Scholar 

  17. A. Kardashin, A. Pervishko, J. Biamonte, and D. Yudin, Phys. Rev. A 104, L020402 (2021).

  18. J. Kattemölle and J. van Wezel, Phys. Rev. B 106, 214429 (2022).

  19. M. Schuld, I. Sinayskiy, and F. Petruccione, Contemp. Phys. 56, 172 (2015).

    Article  ADS  Google Scholar 

  20. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Nature (London, U.K.) 549, 195 (2017).

    Article  ADS  Google Scholar 

  21. M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, Nat. Rev. Phys. 3, 625 (2021).

    Article  Google Scholar 

  22. G. E. Crooks, arXiv: 1811.08419 (2018).

  23. L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev. X 10, 021067 (2020).

  24. F. G. Fuchs, H. Kolden, N. H. Aase, and G. Sartor, SN Comput. Sci. 2, 89 (2021).

    Google Scholar 

  25. S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, Quantum 6, 678 (2022).

    Article  Google Scholar 

  26. M. T. Khumalo, H. A. Chieza, K. Prag, and M. Woolway, Neural. Comput. Appl., 1 (2022).

  27. W. Qian, R. A. M. Basili, M. M. Eshaghian-Wilner, A. Khokhar, G. Luecke, and J. P. Vary, Entropy 25, 1238 (2023).

    Article  ADS  Google Scholar 

  28. U. Azad, B. K. Behera, E. A. Ahmed, P. K. Panigrahi, and A. Farouk, IEEE Trans. Intell. Transp. Syst. 24, 7564 (2023).

    Article  Google Scholar 

  29. H. Lerch and I. F. Grossmann, Trans. CIM 68, 17 (1965).

    Google Scholar 

  30. C. Meagher, R. Dimitrakopoulos, and D. Avis, J. Min. Sci. 50, 508 (2014).

    Article  Google Scholar 

  31. D. S. Hochbaum and A. Chen, Oper. Res. 48, 894 (2000).

    Article  Google Scholar 

  32. R. Khalokakaie, P. A. Dowd, and R. J. Fowell, Min. Tech. 109, 77 (2000).

    Article  Google Scholar 

  33. D. S. Hochbaum, Oper. Res. 56, 992 (2008).

    Article  MathSciNet  Google Scholar 

  34. T. Hao, X. Huang, C. Jia, and C. Peng, Front. Phys. 10, 90659010 (2022).

  35. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.‑Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nat. Commun. 5, 4213 (2014).

    Article  ADS  Google Scholar 

  36. Y. Hindy, J. Pointing, M. Tolunay, S. Venkatarao, M. Motta, and J. A. Latone, arXiv: 2107.11345 (2021).

  37. J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven, Nat. Commun. 9, 4812 (2018).

    Article  ADS  Google Scholar 

  38. D. Wierichs, C. Gogolin, and M. Kastoryano, Phys. Rev. Res. 2, 043246 (2020).

  39. A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, and P. J. Coles, Quantum 5, 558 (2021).

    Article  Google Scholar 

  40. E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti, Quantum 3, 214 (2019).

    Article  Google Scholar 

  41. A. A. Mele, G. B. Mbeng, G. E. Santoro, M. Collura, and P. Torta, Phys. Rev. A 106, L060401 (2022).

  42. K. Zhang, L. Liu, M.-H. Hsieh, and D. Tao, arXiv: 2203.09376 (2022).

  43. A. Batsheva, A. Chertkov, G. Ryzhakov, and I. Oseledets, arXiv: 2301.12162 (2023).

  44. A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Nature (London, U.K.) 549, 242 (2017).

    Article  ADS  Google Scholar 

  45. S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Adv. Quantum Technol. 2, 1900070 (2019).

  46. M. Larocca, N. Ju, D. García-Martín, P. J. Coles, and M. Cerezo, Nat. Comput. Sci. 3, 542 (2023).

    Article  Google Scholar 

  47. J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Quantum Sci. Technol. 4, 014008 (2019).

  48. P.-L. Dallaire-Demers, J. Romero, L. Veis, S. Sim, and A. Aspuru-Guzik, Quantum Sci. Technol. 4, 045005 (2019).

  49. D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 92, 042303 (2015).

  50. M. J. D. Powell, in Advances in Optimization and Numerical Analysis (Springer, Dordrecht, 1994), p. 51.

    Google Scholar 

  51. L. Slattery, B. Villalonga, and B. K. Clark, Phys. Rev. Res. 4, 023072 (2022).

  52. M. S. Jattana, F. Jin, H. de Raedt, and K. Michielsen, Phys. Rev. Appl. 19, 024047 (2023).

  53. I. Oseledets and E. Tyrtyshnikov, Linear Algebra Appl. 432, 70 (2010).

    Article  MathSciNet  Google Scholar 

  54. I. V. Oseledets, SIAM J. Sci. Comput. 33, 2295 (2011).

    Article  MathSciNet  Google Scholar 

  55. A. Cichocki, N. Lee, I. Oseledets, A. H. Phan, Q. Zhao, and D. P. Mandic, Found. Trends Mach. Learn. 9, 249 (2016).

    Article  Google Scholar 

  56. A. Cichocki, N. Lee, I. Oseledets, A. H. Phan, Q. Zhao, and D. P. Mandic, Found. Trends Mach. Learn. 9, 431 (2017).

    Article  Google Scholar 

  57. S. Dolgov, K. Anaya-Izquierdo, C. Fox, and R. Scheichl, Stat. Comput. 30, 603 (2020).

    Article  MathSciNet  Google Scholar 

  58. G. Aleksandrowicz, T. Alexander, P. Barkoutsos, et al., Zenodo (2019). https://doi.org/10.5281/zenodo.2562111

  59. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (SIAM, Philadelphia, 1996).

    Book  Google Scholar 

  60. P. Virtanen, R. Gommers, T. E. Oliphant, et al., Nat. Methods 17, 261 (2020).

    Article  Google Scholar 

  61. G. Paradezhenko, A. Pervishko, and D. Yudin, Phys. Rev. A 109, 012436 (2024).

  62. I. Zacharov, R. Arslanov, M. Gunin, et al., Open Eng. 9, 512 (2019).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the computational resources at the Skoltech supercomputer “Zhores” [62] used in our numerical simulations.

Funding

This work was supported by the Russian Science Foundation, project no. 22-11-00074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paradezhenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paradezhenko, G., Pervishko, A. & Yudin, D. Quantum-Assisted Open-Pit Optimization. Jetp Lett. 119, 470–478 (2024). https://doi.org/10.1134/S0021364023604256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023604256

Navigation