Skip to main content
Log in

Formation of Droplets of the Order Parameter and Superconductivity in Inhomogeneous Fermi–Bose Mixtures (Brief Review)

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The studies of a number of systems treated in terms of an inhomogeneous (spatially separated) Fermi–Bose mixture with superconducting clusters or droplets of the order parameter in a host medium with unpaired normal states are reviewed. A spatially separated Fermi–Bose mixture is relevant to superconducting Ba-KBiO3 bismuth oxides. Droplets of the order parameter can occur in thin films of a dirty metal, described in the framework of the strongly attractive two-dimensional Hubbard model at a low electron density with a clearly pronounced diagonal disorder. The Bose–Einstein condensate droplets are formed in mixtures and dipole gases with an imbalance in the densities of the Fermi and Bose components. The Bose–Einstein condensate clusters also arise at the center or at the periphery of a magnetic trap involving spin-polarized Fermi gases. Exciton and plasmon collapsing droplets can emerge in the presence of the exciton–exciton or plasmon–plasmon interaction. The plasmon contribution to the charge screening in MgB2 leads to the formation of spatially modulated inhomogeneous structures. In metallic hydrogen and metal hydrides, droplets can be formed in shock-wave experiments at the boundary of the first-order phase transition between the metallic and molecular phases. In a spatially separated Fermi–Bose mixture arising in an Aharonov–Bohm interference ring with a superconducting bridge in a topologically nontrivial state, additional Fano resonances may appear and collapse due to the presence of edge Majorana modes in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. A. P. Menushenkov, K. V. Klementev, A. V. Kuznetsov, and M. Yu. Kagan, J. Exp. Theor. Phys. 93, 615 (2001).

    Article  Google Scholar 

  2. A. P. Menushenkov, A. V. Kuznetsov, K. V. Klementiev, and M. Yu. Kagan, J. Supercond. Nov. Magn. 29, 701 (2016).

    Article  Google Scholar 

  3. M. Yu. Kagan, K. I. Kugel, and A. L. Rakhmanov, Phys. Rep. 916, 1 (2021).

    Article  Google Scholar 

  4. M. Yu. Kagan and E. A. Mazur, J. Exp. Theor. Phys. 132, 596 (2021).

    Article  Google Scholar 

  5. E. A. Mazur, R. Sh. Ikhsanov, and M. Yu. Kagan, J. Phys.: Conf. Ser. 2036, 012019 (2021).

  6. Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006).

  7. W. Ong, C. Cheng, I. Arakelyan, and J. E. Thomas, Phys. Rev. Lett. 114, 110403 (2015).

  8. E. A. Burovski, R. Sh. Ikhsanov, A. A. Kuznetsov, and M. Yu. Kagan, J. Phys.: Conf. Ser. 1163, 012046 (2019).

  9. P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964).

    Article  Google Scholar 

  10. A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1964).

    Google Scholar 

  11. E. A. Kuznetsov, M. Yu. Kagan, and A. V. Turlapov, Phys. Rev. A 101, 041612 (2020).

  12. E. A. Kuznetsov and M. Yu. Kagan, Theor. Math. Phys. 202, 399 (2020).

    Article  Google Scholar 

  13. E. A. Kuznetsov and M. Yu. Kagan, J. Exp. Theor. Phys. 132, 704 (2021).

    Article  Google Scholar 

  14. L. P. Pitaevskii, Phys. Usp. 51, 603 (2008).

    Article  Google Scholar 

  15. E. P. Gross, Nuovo Cim. 20, 454 (1961).

    Article  Google Scholar 

  16. V. I. Talanov, JETP Lett. 11, 199 (1971).

    Google Scholar 

  17. S. I. Anisimov and Yu. I. Lysikov, Prikl. Mat. Mekh. 34, 926 (1970).

    Google Scholar 

  18. V. P. Ermakov, in Lectures on Integration of Differential Equations (Univ. Tipogr., Kiev, 1880) [in Russian].

    Google Scholar 

  19. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Science (Washington, DC, U. S.) 298, 2179 (2002).

    Article  Google Scholar 

  20. S. N. Vlasov, V. A. Petrishchev, and V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 14, 1353 (1971).

    Google Scholar 

  21. V. E. Zakharov and E. A. Kuznetsov, Sov. Phys. JETP 64, 773 (1986).

    Google Scholar 

  22. V. E. Zakharov and E. A. Kuznetsov, Phys. Usp. 55, 535 (2012).

    Article  Google Scholar 

  23. V. E. Zakharov, Sov. Phys. JETP 35, 908 (1972).

    Google Scholar 

  24. E. G. Brovman, Yu. Kagan, A. Kholas, and V. V. Pushkarev, JETP Lett. 18, 160 (1973).

    Google Scholar 

  25. G. Modugno, G. Roati, F. Riboli, F. Ferlaino, R. J. Brecha, and M. Inguscio, Science (Washington, DC, U. S.) 297, 2240 (2002).

    Article  Google Scholar 

  26. S. T. Chui and V. N. Ryzhov, Phys. Rev. A 69, 043607 (2004).

  27. S. T. Chui, V. N. Ryzhov, and E. E. Tareyeva, JETP Lett. 80, 274 (2004).

    Article  Google Scholar 

  28. M. Yu. Kagan, I. V. Brodsky, D. V. Efremov, and A. V. Klaptsov, Phys. Rev. A 70, 023407 (2004).

  29. M. Yu. Kagan, A. V. Klaptsov, I. V. Brodsky, R. Combescot, and X. Leyronas, Phys. Usp. 49, 1079 (2006).

    Google Scholar 

  30. A. V. Turlapov and M. Yu. Kagan, J. Phys.: Condens. Matter 29, 383004 (2019).

  31. M. Yu. Kagan and A. V. Turlapov, Phys. Usp. 62, 215 (2019).

    Article  Google Scholar 

  32. I. F. Barbur, H. Kadan, M. Schmitt, M. Wenzel, and T. Pfau, Phys. Rev. Lett. 116, 215301 (2016).

  33. V. M. Silkin, A. Balassis, P. M. Eschenique, and E. V. Chulkov, Phys. Rev. B 80, 054521 (2009).

  34. M. Yu. Kagan, V. A. Mitskan, and M. M. Korovushkin, Phys. Usp. 58, 733 (2015).

    Article  Google Scholar 

  35. R. Sh. Ikhsanov, E. A. Mazur, and M. Yu. Kagan, Izv. Ufim. Nauch. Tsentra RAN 1, 49 (2023).

    Article  Google Scholar 

  36. R. Szczesniak, Acta Phys. Polon. A 109, 179 (2006).

    Article  Google Scholar 

  37. A. P. Durajski, Sci. Rep. 6, 38570 (2016).

    Article  Google Scholar 

  38. N. A. Kudryashov, A. A. Kutukov, and E. A. Mazur, JETP Lett. 104, 460 (2016).

    Article  Google Scholar 

  39. I. A. Kruglov, D. V. Semenok, H. Song, R. Szcześniak, I. A. Wrona, R. Akashi, E. M. M. Davari, D. Duan, C. Tian, A. G. Kvashnin, and A. R. Oganov, Phys. Rev. B 101, 024508 (2020).

  40. O. V. Dolgov, R. K. Kremer, J. Kortus, A. A. Golubov, and S. V. Shulga, Phys. Rev. B 72, 024504 (2005).

  41. Z. Zhang, T. Cui, M. J. Hutcheon, A. M. Shipley, H. Song, M. Du, V. Z. Kresin, D. Duan, C. J. Pickard, and Y. Yao, Phys. Rev. Lett. 128, 047001 (2022).

  42. P. B. Allen and R. C. A. Dynes, Phys. Rev. B 12, 905 (1975).

    Article  Google Scholar 

  43. F. Marsiglio and J. P. Carbotte, in Superconductivity, Vol. 1, Conventional and Unconventional Superconductors (Springer, Berlin, 2008), p. 73.

    Google Scholar 

  44. J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

    Article  Google Scholar 

  45. E. G. Brovman, Yu. Kagan, and A. Kholas, Sov. Phys. JETP 34, 1300 (1972).

    Google Scholar 

  46. M. Yu. Kagan, JETP Lett. 103, 728 (2016).

    Article  Google Scholar 

  47. M. Yu. Kagan and A. Bianconi, Condens. Matter 4, 51 (2019).

    Article  Google Scholar 

  48. M. Houtput, J. Tempere, and I. F. Silvera, Phys. Rev. B 100, 134106 (2019).

  49. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Nauka, Moscow, 1965; CRC, Boca Raton, FL, 2000).

  50. M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E. Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer, Science (Washington, DC, U. S.) 348, 1455 (2015).

    Article  Google Scholar 

  51. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).

    Article  MathSciNet  Google Scholar 

  52. M. Yu. Kagan, V. V. Val’kov, and S. V. Aksenov, Phys. Rev. B 95, 035411 (2017).

  53. M. Yu. Kagan, V. V. Val’kov, and S. V. Aksenov, J. Magn. Magn. Mater. 440, 15 (2017).

    Article  Google Scholar 

  54. M. Yu. Kagan and S. V. Aksenov, JETP Lett. 107, 493 (2018).

    Article  Google Scholar 

  55. V. V. Val’kov, M. S. Shustin, S. V. Aksenov, A. O. Zlotnikov, A. D. Fedoseev, V. A. Mitskan, and M. Yu. Kagan, Phys. Usp. 65, 2 (2022).

    Article  Google Scholar 

  56. S. V. Aksenov, M. Yu. Kagan, and V. V. Val’kov, J. Phys.: Condens. Matter 31, 225301 (2019).

  57. S. V. Aksenov and M. Yu. Kagan, JETP Lett. 111, 286 (2020).

    Article  Google Scholar 

  58. U. Fano, Phys. Rev. 124, 1866 (1961).

    Article  Google Scholar 

  59. E. Majorana, Nuovo Cim. 5, 171 (1937).

    Article  Google Scholar 

  60. A. Yu. Kitaev, Phys. Usp. 44 (Suppl.), 131 (2001).

    Article  Google Scholar 

  61. S. V. Aksenov, J. Phys.: Condens. Matter 34, 255301 (2022).

  62. L. V. Keldysh, Phys. Usp. 60, 1180 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00015). M.Yu. Kagan acknowledges the support of the National Research University Higher School of Economics (Program of Basic Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kagan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Kugel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagan, M.Y., Aksenov, S.V., Turlapov, A.V. et al. Formation of Droplets of the Order Parameter and Superconductivity in Inhomogeneous Fermi–Bose Mixtures (Brief Review). Jetp Lett. 117, 755–764 (2023). https://doi.org/10.1134/S0021364023600994

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364023600994

Navigation