Skip to main content
Log in

Electrostatic and Van Der Waals Interactions of Nanoparticles in Electrolytes

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The electrostatic interaction between nanoparticles caused by the overlapping of double electric layers and the van der Waals interaction caused by quantum and thermodynamic fluctuations of electromagnetic fields are considered. The linearized Poisson–Boltzmann equation for particles with a fixed electric potential on their surface is used in the case of the electrostatic interaction. An exact solution of the problem has been obtained both for identical particles and for particles with strongly different sizes. The screening of static fluctuations and the retardation of electromagnetic fields for the dispersion part of the van der Waals interaction have been taken into account. The total interaction energy of two particles has been calculated for ion concentrations in an electrolyte from 10–6 to 10–2 mol/L and sizes of nanoparticles from 1 to 103 nm. It has been found that the van der Waals force exceeds the screened electrostatic repulsive force at high concentrations of the electrolyte from 10–3 to 10–2 mol/L at both small and large interparticle distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. J. N. Israelachvili, Intermolecular and Surface Forces, 3rd ed. (Elsevier, Amsterdam, 2011), p.191.

    Google Scholar 

  2. B. Honig and A. Nicholls, Science (Washington, DC, U. S.) 268 (5214), 1144 (1995).

    Article  ADS  Google Scholar 

  3. I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, and M. T. Koper, Nat. Energy 2, 17031 (2017).

    Article  ADS  Google Scholar 

  4. B. Smit, J. A. Reimer, C. M. Oldenburg, and I. C. Bourg, Introduction to Carbon Capture and Sequestration (World Scientific, Singapore, 2014), Vol. 1.

    Book  Google Scholar 

  5. M. Manciu and E. Ruckenstein, Langmuir 17, 7061 (2001).

    Article  Google Scholar 

  6. H. Wennerstrom, E. Vallina Estrada, J. Danielsson, and M. Oliveberg, Proc. Natl. Acad. Sci. U. S. A. 117, 10113 (2020).

    Article  ADS  Google Scholar 

  7. S. Su, I. Siretanu, D. van den Ende, B. Mei, G. Mul, and F. Mugele, Adv. Mater. 33, 2106229 (2021).

  8. D. F. Parsons, M. Boström, P. L. Nostro, and B. W. Ninham, Phys. Chem. Chem. Phys. 13, 12352 (2011).

    Article  Google Scholar 

  9. J. Klein, Friction 1, 1 (2013).

    Article  Google Scholar 

  10. K. Voitchovsky, J. J. Kuna, S. A. Contera, E. Tosatti, and F. Stellacci, Nat. Nanotechnol. 5, 401 (2010).

    Article  ADS  Google Scholar 

  11. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, Amsterdam, 2015).

    Google Scholar 

  12. Y. Liang, N. Hilal, P. Langston, and V. Starov, Adv. Colloid Interface Sci. 134–135, 151 (2007).

    Article  Google Scholar 

  13. N. M. Kovalchuk, D. Johnson, V. Sobolev, N. Hilal, and V. Starov, Adv. Colloid Interface Sci. 272, 102020 (2019).

  14. B. V. Derjaguin, N. V. Churaev, and V. M. Muller, Surface Forces (Consultants Bureau, New York, 1987).

    Book  Google Scholar 

  15. A. B. Glendinning and W. B. Russel, J. Colloid Interface Sci. 93, 95 (1983).

    Article  ADS  Google Scholar 

  16. S. L. Carnie and D. Y. C. Chan, J. Colloid Interface Sci. 161, 260 (1993).

    Article  ADS  Google Scholar 

  17. A. V. Filippov and I. N. Derbenev, J. Exp. Theor. Phys. 123, 1099 (2016).

    Article  ADS  Google Scholar 

  18. I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, J. Chem. Phys. 145, 084103 (2016).

  19. A. V. Filippov, I. N. Derbenev, A. A. Pautov, and M. M. Rodin, J. Exp. Theor. Phys. 125, 518 (2017).

    Article  ADS  Google Scholar 

  20. I. N. Derbenev, A. V. Filippov, A. J. Stace, and E. Besley, Soft Matter 14, 5480 (2018).

    Article  ADS  Google Scholar 

  21. S. V. Siryk, A. Bendandi, A. Diaspro, and W. Rocchia, J. Chem. Phys. 155, 114114 (2021).

  22. W. R. Bowen and F. Jenner, Adv. Colloid Interface Sci. 56, 201 (1995).

    Article  Google Scholar 

  23. J. I. Kilpatrick, S.-H. Loh, and S. P. Jarvis, J. Am. Chem. Soc. 135, 2628 (2013).

    Article  Google Scholar 

  24. S. R. van Lin, K. K. Grotz, I. Siretanu, N. Schwierz, and F. Mugele, Langmuir 35, 5737 (2019).

    Article  Google Scholar 

  25. A. Klaassen, F. Liu, F. Mugele, and I. Siretan, Langmuir 38, 914 (2022).

    Article  Google Scholar 

  26. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, London, 1922), Vol. 1.

    MATH  Google Scholar 

  27. D. Langbein, Springer Tracts Mod. Phys., 72 (1974).

  28. V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics, 2nd ed. (Nauka, Moscow, 1970; Academic, London, 1978).

  29. L. N. McCartney and S. Levine, J. Colloid Interface Sci. 30, 345 (1969).

    Article  ADS  Google Scholar 

  30. G. M. Bell, S. Levine, and L. N. McCartney, J. Colloid. Interface Sci. 33, 335 (1970).

    Article  ADS  Google Scholar 

  31. H. C. Hamaker, Physica (Amsterdam, Neth.) 4, 1058 (1937).

  32. E. M. Lifshits, Sov. Phys. JETP 2, 73 (1955).

    Google Scholar 

  33. I. E. Dzyaloshinskii, E. M. Lifshits, and L. P. Pitaevskii, Sov. Phys. JETP 10, 161 (1959).

    Google Scholar 

  34. B. V. Derjaguin, I. I. Abrikosova, and E. M. Lifshitz, Phys. Usp. 58, 906 (2015).

    Article  ADS  Google Scholar 

  35. Yu. S. Barash and V. L. Ginzburg, Sov. Phys. Usp. 27, 467 (1984).

    Article  ADS  Google Scholar 

  36. N. V. Churaev, Russ. Chem. Rev. 73, 25 (2004).

    Article  ADS  Google Scholar 

  37. D. J. Mitchell and B. W. Ninham, J. Chem. Phys. 56, 1117 (1972).

    Article  ADS  Google Scholar 

  38. R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).

    Article  ADS  Google Scholar 

  39. B. Vincent, J. Colloid Interface Sci. 42, 270 (1973).

    Article  ADS  Google Scholar 

  40. J. Chen and A. Anandarajah, J. Colloid Interface Sci. 180, 519 (1996).

    Article  ADS  Google Scholar 

  41. L. Bergström, Adv. Colloid Interface Sci. 70, 125 (1997).

    Article  Google Scholar 

  42. V. A. Parsegian and G. H. Weiss, J. Colloid Interface Sci. 81, 285 (1981).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-22-01000, A.V. Filippov) and by the European Space Agency (projects NanoPaInt Marie Curie, ЕС, and MAP EVAPORATION, V. M. Starov).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Filippov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippov, A.V., Starov, V.M. Electrostatic and Van Der Waals Interactions of Nanoparticles in Electrolytes. Jetp Lett. 117, 598–605 (2023). https://doi.org/10.1134/S002136402360074X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402360074X

Navigation