Skip to main content
Log in

Growth of Two-Dimensional Hexagonal Lattices in the Phase-Field Crystal Model

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The crystallization of a supercooled metastable homogeneous phase into a hexagonal periodic lattice has been studied within the phase-field crystal model. The numerically determined velocities of the crystallization front of the hexagonal lattice are compared to the analytical traveling wave solution. The growth of the hexagonal lattice during the crystallization of the undercooled liquid phase has been described within a second-order (two-mode) model, where the amplitudes of the first and second sublattices are taken into account separately. The hexagonal lattice is formed after the formation of the metastable triangular phase; the kinetics of the crystallization front is determined by the symmetry of the growing phase and by the driving force mag-nitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701 (2002).

  2. S. A. Brazovskii, Sov. Phys. JETP 41, 85 (1975).

    ADS  Google Scholar 

  3. A. J. Archer, D. J. Ratliff, A. M. Rucklidge, and P. Subramanian, Phys. Rev. E 100, 022140 (2019).

  4. V. V. Lebedev and A. R. Muratov, Sov. Phys. Solid State 32, 493 (1990).

    Google Scholar 

  5. E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993).

    Article  ADS  Google Scholar 

  6. P. K. Galenko, V. E. Ankudinov, and I. O. Starodumov, High-Speed Dynamics in the Phase Field Method: Microscopy (IKI, Izhevsk, 2021) [in Russian].

    MATH  Google Scholar 

  7. H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth, G. Tegze, and L. Gránásy, Adv. Phys. 61, 665 (2012).

    Article  ADS  Google Scholar 

  8. P. K. Galenko and K. R. Elder, Phys. Rev. B 83, 064113 (2011).

  9. D. M. Herlach, Mater. Sci. Eng. Rep. R 12, 177 (1994).

    Article  Google Scholar 

  10. S. K.Mkhonta, K. R. Elder, and Z. F. Huang, Phys. Rev. Lett. 111, 35501 (2013).

    Article  ADS  Google Scholar 

  11. N. Osterman, D. Babič, I. Poberaj, J. Dobnikar, and P. Ziherl, Phys. Rev. Lett. 99, 248301 (2007).

  12. G. B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath, and D. M. Stamper-Kurn, Phys. Rev. Lett. 108, 045305 (2012).

  13. K. L. Elder, M. Seymour, M. Lee, M. Hilke, and N. Provatas, Phil. Trans. A 376, 1 (2018).

    Google Scholar 

  14. R. Kondo, Phys. Rev. B 104, 014112 (2021).

  15. M. Seymour and N. Provatas, Phys. Rev. B 93, 035447 (2016).

  16. R. Lifshitz and D. M. Petrich, Phys. Rev. Lett. 79, 1261 (1997).

    Article  ADS  Google Scholar 

  17. A. N. Ipatov, D. A. Parshin, and D. A. Conyuh, J. Exp. Theor. Phys. 133, 461 (2021).

    Article  ADS  Google Scholar 

  18. P. K. Galenko, F. Iunes Sanches, and K. R. Elder, Phys. D (Amsterdam, Neth.) 308, 1 (2015).

  19. V. Ankudinov, K. R. Elder, and P. K. Galenko, Phys. Rev. E 102, 062802 (2020).

  20. V. N. Ryzhov and E. E. Tareyeva, Phys. Lett. A 75, 88 (1979).

    Article  ADS  Google Scholar 

  21. V. N. Ryzhov and E. E. Tareeva, Sov. J. Theor. Math. Phys. 92, 835 (1992).

    Article  Google Scholar 

  22. T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979).

    Article  ADS  Google Scholar 

  23. V. E. Ankudinov, P. K. Galenko, N. V. Kropotin, and M. D. Krivilyov, J. Exp. Theor. Phys. 122, 298 (2016).

    Article  ADS  Google Scholar 

  24. A. Emdadi, M. A. Zaeem, and E. Asadi, Comput. Mater. Sci. 123, 139 (2016).

    Article  Google Scholar 

  25. P. K. Galenko and D. Jou, Phys. Rep. 818, 1 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Galenko, D. Danilov, and V. Lebedev, Phys. Rev. E 79, 51110 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  27. P. K. Galenko, H. Gomez, N. V. Kropotin, and K. R. Elder, Phys. Rev. E 88, 13310 (2013).

    Article  ADS  Google Scholar 

  28. P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. Lett. 96, 225504 (2006).

  29. G. I. Tóth, G. Tegze, T. Pusztai, G. Tóth, and L. Gránásy, J. Phys.: Condens. Matter 22, 364101 (2010).

  30. V. Ankudinov, I. Starodumov, N. P. Kryuchkov, E. V. Yakovlev, S. O. Yurchenko, and P. K. Galenko, Math. Methods Appl. Sci. 44, 12185 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  31. K. R. Elder, Z. F. Huang, and N. Provatas, Phys. Rev. E 81, 011602 (2010).

  32. N. Goldenfeld, B. P. Athreya, and J. A. Dantzig, Phys. Rev. E 72, 020601(R) (2005).

  33. S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978).

    Article  ADS  Google Scholar 

  34. I. G. Nizovtseva and P. K. Galenko, Phil. Trans. R. Soc. A 376, 20170202 (2018).

  35. V. G. Lebedev, JETP Lett. 115, 226 (2022).

    Article  ADS  Google Scholar 

  36. C. Desgranges and J. Delhommelle, J. Chem. Phys. 126, 054501 (2007).

  37. Y. Liu, H. Nie, R. Bansil, M. Steinhart, J. Bang, and T. P. Lodge, Phys. Rev. E 73, 061803 (2006).

  38. V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, and E. N. Tsiok, Phys. Usp. 60, 857 (2017).

    Article  ADS  Google Scholar 

  39. COMSOL Multiphysics_Software, v. 6.0 (Comsol AB, Stockholm, Sweden, 2022).

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 21-73-00263, https://rscf.ru/project/21-73-00263/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Ankudinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by R. Tyapaev

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankudinov, V.E., Galenko, P.K. Growth of Two-Dimensional Hexagonal Lattices in the Phase-Field Crystal Model. Jetp Lett. 115, 728–734 (2022). https://doi.org/10.1134/S0021364022600823

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364022600823

Navigation