Skip to main content
Log in

Generation of Terahertz Radiation by Multicolor Ionizing Pulses

  • Optics and Laser Physics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Analytical formulas have been obtained for the optimal waveform of an ionizing pulse and corresponding maximum density of residual terahertz currents. The found analytical solutions can be implemented with multicolor femtosecond pulses containing the field at the fundamental frequency and several of its lowest harmonics. The amplitudes of odd harmonics in the field optimal for the generation of terahertz radiation are larger than those for neighboring even harmonics. The maximum residual current density increases with an increase in the number of harmonics, in the wavelength of the fundamental harmonic, and in the ionization potential of gas particles and with a decrease in the duration of the ionizing pulse. This maximum residual current density approaches limiting values for saturated ionization when few-cycle pulses are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Yu. Fedorov, A. Pugžlys, A. Baltuška, and S. Tzortzakis, Nat. Commun. 11, 292 (2020).

    Article  ADS  Google Scholar 

  2. J. A. Fülöp, S. Tzortzakis, and T. Kampfrath, Adv. Opt. Mater. 8, 1900681 (2020).

    Article  Google Scholar 

  3. B. Clough, J. Dai, and X.-C. Zhang, Mater. Today 15, 50 (2012).

    Article  Google Scholar 

  4. K.-Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, IEEE J. Quantum Electron. 48, 797 (2012).

    Article  ADS  Google Scholar 

  5. X. C. Zhang, A. Shkurinov, and Y. Zhang, Nat. Photon. 11, 16 (2017).

    Article  ADS  Google Scholar 

  6. P. M. Solyankin, I. A. Nikolaeva, A. A. Angeluts, D. E. Shipilo, N. V. Minaev, N. A. Panov, A. V. Balakin, Y. Zhu, O. G. Kosareva, and A. P. Shkurinov, New J. Phys. 22, 013039 (2020).

    Article  ADS  Google Scholar 

  7. C. Meng, W. Chen, X. Wang, Z. Lü, Y. Huang, J. Liu, D. Zhang, Z. Zhao, and J. Yuan, Appl. Phys. Lett. 109, 131105 (2016).

    Article  ADS  Google Scholar 

  8. V. A. Tulsky, M. Baghery, U. Saalmann, and S. V. Popruzhenko, Phys. Rev. A 98, 053415 (2018).

    Article  ADS  Google Scholar 

  9. A. A. Ushakov, M. Matoba, N. Nemoto, N. Kanda, K. Konishi, P. A. Chizhov, N. A. Panov, D. E. Shipilo, V. V. Bukin, M. Kuwata-Gonokami, J. Yumoto, O. G. Kosareva, S. V. Garnov, and A. B. Savel’ev, JETP Lett. 106, 706 (2017).

    Article  ADS  Google Scholar 

  10. N. V. Vvedenskii, A. I. Korytin, V. A. Kostin, A. A. Murzanev, A. A. Silaev, and A. N. Stepanov, Phys. Rev. Lett. 112, 055004 (2014).

    Article  ADS  Google Scholar 

  11. L. Zhang, S. Zhang, R. Zhang, T. Wu, Y. Zhao, C. Zhang, and X.-C. Zhang, Opt. Express 25, 32346 (2017).

    Article  ADS  Google Scholar 

  12. V. A. Kostin, I. D. Laryushin, A. A. Silaev, and N. V. Vvedenskii, Phys. Rev. Lett. 117, 035003 (2016).

    Article  ADS  Google Scholar 

  13. L.-L. Zhang, W.-M. Wang, T. Wu, R. Zhang, S.-J. Zhang, C.-L. Zhang, Y. Zhang, Z.-M. Sheng, and X.-C. Zhang, Phys. Rev. Lett. 119, 235001 (2017).

    Article  ADS  Google Scholar 

  14. V. A. Kostin and N. V. Vvedenskii, Phys. Rev. Lett. 120, 065002 (2018).

    Article  ADS  Google Scholar 

  15. A. A. Silaev, V. A. Kostin, I. D. Laryushin, and N. V. Vvedenskii, JETP Lett. 107, 151 (2018).

    Article  ADS  Google Scholar 

  16. T. Balčiūnas, D. Lorenc, M. Ivanov, O. Smirnova, A. M. Zheltikov, D. Dietze, K. Unterrainer, T. Rathje, G. G. Paulus, A. Baltuška, and S. Haessler, Opt. Express 23, 15278 (2015).

    Article  ADS  Google Scholar 

  17. V. A. Kostin and N. V. Vvedenskii, JETP Lett. 110, 457 (2019).

    Article  ADS  Google Scholar 

  18. A. A. Silaev and N. V. Vvedenskii, Phys. Plasmas 22, 053103 (2015).

    Article  ADS  Google Scholar 

  19. G. Rodriguez and G. L. Dakovski, Opt. Express 18, 15130 (2010).

    Article  ADS  Google Scholar 

  20. M. Chen, A. Pukhov, X.-Y. Peng, and O. Willi, Phys. Rev. E 78, 046406 (2008).

    Article  ADS  Google Scholar 

  21. P. González de Alaiza Martínez, I. Babushkin, L. Bergé, S. Skupin, E. Cabrera-Granado, C. Köhler, U. Morgner, A. Husakou, and J. Herrmann, Phys. Rev. Lett. 114, 183901 (2015).

    Article  ADS  Google Scholar 

  22. L. Zhang, G.-L. Wang, and X.-X. Zhou, J. Mod. Opt. 63, 2159 (2016).

    Article  ADS  Google Scholar 

  23. C. Lu, C. Zhang, L. Zhang, X. Wang, and S. Zhang, Phys. Rev. A 96, 053402 (2017).

    Article  ADS  Google Scholar 

  24. M.-J. Pei, C.-H. Lu, X.-W. Wang, Z.-R. Sun, and S.-A. Zhang, Chin. Phys. B 27, 084209 (2018).

    Article  ADS  Google Scholar 

  25. V. Vaičaitis, O. Balachninaitė, U. Morgner, and I. Babushkin, J. Appl. Phys. 125, 173103 (2019).

    Article  ADS  Google Scholar 

  26. V. B. Gildenburg and N. V. Vvedenskii, Phys. Rev. Lett. 98, 2450020 (2007).

    Article  Google Scholar 

  27. H.-C. Wu, J. Meyer-ter-Vehn, and Z.-M. Sheng, New J. Phys. 10, 043001 (2008).

    Article  ADS  Google Scholar 

  28. A. A. Silaev and N. V. Vvedenskii, Phys. Rev. Lett. 102, 115005 (2009).

    Article  ADS  Google Scholar 

  29. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, NIST Digital Library of Mathematical Functions, Release 1.0.26. http://dlmf.nist.gov. Accessed March 15, 2020.

  30. D. Bauer and P. Mulser, Phys. Rev. A 59, 569 (1999).

    Article  ADS  Google Scholar 

  31. W.-M. Wang, P. Gibbon, Z.-M. Sheng, and Y.-T. Li, Phys. Rev. A 90, 023808 (2014).

    Article  ADS  Google Scholar 

Download references

Funding

The numerical calculations in this work were supported by the Russian Science Foundation (project no. 18-72-00103) and the analytical studies were supported by the Russian Foundation for Basic Research (project nos. 18-02-01150, 18-32-00951, and 20-32-70213) and by the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 19-1-2-52-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vvedenskii.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 2, pp. 81–87.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostin, V.A., Laryushin, I.D. & Vvedenskii, N.V. Generation of Terahertz Radiation by Multicolor Ionizing Pulses. Jetp Lett. 112, 77–83 (2020). https://doi.org/10.1134/S002136402014012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402014012X

Navigation