Skip to main content
Log in

Thermophoresis-Assisted Microscale Magnus Effect in Optical Traps

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The Magnus effect, commonly observed on the macroscale, has been considered to be negligible at the microfluidic limit. However, the thermophoretic effect at the microscale leads to a strong lift force that acts on the optically trapped and heated microparticles rotating in a liquid flow. This thermophoresis-assisted Magnus effect is experimentally observed and explained through the inhomogeneity of temperature distribution in the flow around the absorbing microparticles rotated by magnetic forces within the limit of ultralow Reynolds numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Prandtl, Naturwissensch. 13, 93 (1925).

    Article  ADS  Google Scholar 

  2. G. Magnus, Ann. Phys. 164, 1 (1853).

    Article  Google Scholar 

  3. J. M. Davies, J. Appl. Phys. 20, 821 (1948).

    Article  ADS  Google Scholar 

  4. J. W. Maccoll, J. Aeronaut. Soc. 32, 777 (1928).

    Article  Google Scholar 

  5. H. M. Barkla and L. J. Auchterlonie, J. Fluid Mech. 47, 437 (1971).

    Article  ADS  Google Scholar 

  6. R. Eichhorn and S. Small, J. Fluid Mech. 20, 513 (1964).

    Article  ADS  Google Scholar 

  7. Yu. Tsuji, Yo. Morikawa, and O. Mizuno, J. Fluids Eng. 107, 484 (1985).

    Article  Google Scholar 

  8. B. Oesterle and T. B. Dinh, Exp. Fluids 25, 16 (1998).

    Article  Google Scholar 

  9. S. Martin, M. Reichert, H. Stark, and T. Gisler, Phys. Rev. Lett. 97, 248301 (2006).

    Article  ADS  Google Scholar 

  10. G. Volpe and D. Petrov, Phys. Rev. Lett. 97, 210603 (2006).

    Article  ADS  Google Scholar 

  11. S. I. Rubinow and J. B. Keller, J. Fluid Mech. 11, 447 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  12. G. Cipparrone, R. J. Hernandez, P. Pagliusi, and C. Provenzano, Phys. Rev. A 84, 015802 (2011).

    Article  ADS  Google Scholar 

  13. K. C. Neuman and A. Nagy, Nat. Methods 5, 491 (2008).

    Article  Google Scholar 

  14. I. De Vlaminck and C. Dekker, Ann. Rev. Biophys. 41, 453 (2012).

    Article  Google Scholar 

  15. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 5, 288 (1986).

    Article  ADS  Google Scholar 

  16. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).

    Article  ADS  Google Scholar 

  17. R. Piazza and A. Parola, J. Phys.: Condens. Matter 20, 153102 (2008).

    ADS  Google Scholar 

  18. E. J. G. Peterman, F. Gittes, and Ch. F. Schmidt, Biophys. J. 84, 1308 (2003).

    Article  ADS  Google Scholar 

  19. J.-C. Meiners and S. R. Quake, Phys. Rev. Lett. 82, 2211 (1999).

    Article  ADS  Google Scholar 

  20. M. N. Skryabina, E. V. Lyubin, M. D. Khokhlova, and A. A. Fedyanin, JETP Lett. 95, 560 (2012).

    Article  ADS  Google Scholar 

  21. M. N. Romodina, E. V. Lyubin, and A. A. Fedyanin, Sci. Rep. 6, 21212 (2016).

    Article  ADS  Google Scholar 

  22. E. V. Lyubin, M. D. Khokhlova, M. N. Skryabina, and A. A. Fedyanin, J. Biomed. Opt. 17, 101510 (2012).

    Article  ADS  Google Scholar 

  23. D. A. Shilkin, E. V. Lyubin, I. V. Soboleva, and A. A. Fedyanin, JETP Lett. 98, 644 (2013).

    Article  Google Scholar 

  24. T. L. Bergman and F. P. Incropera, Introduction to Heat Transfer (Wiley, Hoboken, NJ, 2011).

    Google Scholar 

  25. R. Piazza, Soft Matter 4, 1740 (2008).

    Article  ADS  Google Scholar 

  26. K. I. Morozov, J. Exp. Theor. Phys. 88, 944 (1999).

    Article  ADS  Google Scholar 

  27. M. Braibanti, D. Vigolo, and R. Piazza, Phys. Rev. Lett. 100, 108303 (2008).

    Article  ADS  Google Scholar 

  28. A. Wurger, C.R. Mec. 341, 438 (2013).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Ministry of Education and Science (contract no. 14.W03.31.0008), by the Russian Science Foundation (project no. 15-02-00065 for the experiment and project no. 18-72-00247 for calculations), by the Russian Foundation for Basic Research (project no. 18-32-20217), and in part by the Quantum Technology Center, Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Fedyanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romodina, M.N., Shchelkunov, N.M., Lyubin, E.V. et al. Thermophoresis-Assisted Microscale Magnus Effect in Optical Traps. Jetp Lett. 110, 750–754 (2019). https://doi.org/10.1134/S002136401923005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401923005X

Navigation