Skip to main content
Log in

Gauge Linear Sigma Model for Berglund—Hübsch-Type Calabi—Yau Manifolds

  • Fields, Particles, and Nuclei
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We briefly present the results of our computation of special Kähler geometry for polynomial deformations of Berglund–Hübsch type Calabi–Yau manifolds. We also build mirror symmetric Gauge Linear Sigma Model and check that its partition function computed by supersymmetric localization coincides with exponent of the Kähler potential of the special metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Candelas, X. C. de la Ossa, P. S. Green, and L. Parkes, Nucl. Phys. B 359, 21 (1991).

    Article  ADS  Google Scholar 

  2. K. Aleshkin and A. Belavin, J. Phys. A 51, 055403 (2018); arXiv: 1706.05342.

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Aleshkin and A. Belavin, Phys. Lett. B 776, 139 (2018); arXiv: 1708.08362.

    Article  ADS  MathSciNet  Google Scholar 

  4. K. Aleshkin and A. Belavin, J. High Energy Phys. 03, 018 (2018); arXiv: 1710.11609.

    Article  ADS  Google Scholar 

  5. K. Aleshkin and A. Belavin, JETP Lett. 108, 705 (2018); arXiv: 1806.02772 [hep-th].

    Article  ADS  Google Scholar 

  6. S. Katmadas and A. Tomasiello, J. High Energy Phys. 1804, 048 (2018); arXiv: 1712.06608 [hep-th].

    Article  ADS  Google Scholar 

  7. R. Blumenhagen, D. Kläwer, L. Schlechter, and F. Wolf, J. High Energy Phys. 1806, 052 (2018); arXiv: 1803.04989 [hep-th].

    Article  ADS  Google Scholar 

  8. R. Blumenhagen, PoS CORFU 2017, 175 (2018); arXiv: 1804. 10504.

    Google Scholar 

  9. M. Kreuzer and H. Skarke, Commun. Math. Phys. 150, 137 (1992); arXiv: hep-th/9202039.

    Article  ADS  Google Scholar 

  10. P. Berglund and T. Hubsch, SciPost Phys. 4 (2), 009 (2018); arXiv: 1611.10300.

    Article  ADS  Google Scholar 

  11. M. Krawitz, PhD Thesis (Univ. Michigan, 2010).

    Google Scholar 

  12. E. Witten, Nucl. Phys. B 403, 159 (1993); hepth/9301042.

    Article  ADS  Google Scholar 

  13. F. Benini and S. Cremonesi, Commun. Math. Phys. 334, 1483 (2015); arXiv: 1206.2356.

    Article  ADS  Google Scholar 

  14. N. Doroud, J. Gomis, B. le Floch, and S. Lee, J. High Energy Phys. 05, 093 (2013); arXiv: 1206.2606.

    Article  ADS  Google Scholar 

  15. H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, and M. Romo, Commun. Math. Phys. 325, 1139 (2014); arXiv: 1208.6244.

    Article  ADS  Google Scholar 

  16. K. Aleshkin, A. Belavin, and A. Litvinov, JETP Lett. 108, 710 (2018).

    Article  ADS  Google Scholar 

  17. K. Aleshkin, A. Belavin, and A. Litvinov, J. Stat. Mech.: Theory Exp. 2019, 034003 (2019).

    Article  Google Scholar 

  18. V. V. Batyrev, J. Alg. Geom. 3, 493 (1994); arXiv: alggeom/9310003.

    Google Scholar 

  19. K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and E. Zaslow, Mirror Symmetry (AMS, Clay Math. Inst., 2003), p. 101.

    MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to N. Doroud, A. Litvinov, and M. Romo for useful discussions

Funding

This work was supported by the Russian Science Foundation, project no. 18-12-00439.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Aleshkin or A. Belavin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshkin, K., Belavin, A. Gauge Linear Sigma Model for Berglund—Hübsch-Type Calabi—Yau Manifolds. Jetp Lett. 110, 711–714 (2019). https://doi.org/10.1134/S0021364019230012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019230012

Navigation