Skip to main content
Log in

Features of Charge Accumulation Processes in Nanoheterostructures Based on Titanium and Molybdenum Oxides

  • Miscellaneous
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Charge photoaccumulation processes in TiO2/MoO3 nanoheterostructures have been studied with the use of point defects in the structure of samples as specific “markers.” It has been found that the relaxation time of photoexcited charge carriers increases sharply in TiO2/MoO3 heterostructures as compared to initial TiO2 to about 4 h. A method based on electron paramagnetic resonance spectroscopy has also been proposed to determine the positions of energy levels of defects in the band gap of semiconductors composing a heterostructure. The results can be used to develop new-generation photocatalytic environment cleaning systems where the degradation of toxic impurities continues for a long time after the end of illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 25, 1523 (1991).

    Article  ADS  Google Scholar 

  2. U. Stafford, K. A. Gray, and P. V. Kamat, Heterogeneous Chem. Rev. 3, 77 (1996).

    Article  Google Scholar 

  3. TiO2 Photocatalysis, Fundamentals and Applications, Ed. by A. Fujishima, K. Hashimoto, and T. Watanabe (Bkc Inc., Tokyo, 1999), p.9.

  4. H. Tang, F. Lévy, H. Berger, and P. E. Schmid, Phys. Rev. B 52, 7771 (1995).

    Article  ADS  Google Scholar 

  5. A. Tarasov, G. Trusov, A. Minnekhanov, D. Gil, E. Konstantinova, E. Goodilin, and Y. Dobrovolsky, J. Mater. Chem. C 2, 3102 (2014).

    Article  Google Scholar 

  6. R. Asahi, T. Morikawa, T. Ohwki, K. Aoki, and Y. Taga, Science (Washington, DC, U.S.) 293, 269 (2001).

    Article  Google Scholar 

  7. A. Tarasov, A. Minnekhanov, G. Trusov, E. Konstantinova, A. Zyubin, T. Zyubina, A. Sadovnikov, Y. Dobrovolsky, and E. Goodilin, J. Phys. Chem. C 119, 18663 (2015).

    Article  Google Scholar 

  8. C. DiValentin, G. Pacchioni, A. Selloni, S. Livraghi, and E. Giamello, J. Phys. Chem. B 109, 11414 (2005).

    Article  Google Scholar 

  9. J. Bandara, K. Tennakone, and P. P. B. Jayatilaka, Chemosphere 49, 439 (2002).

    Article  ADS  Google Scholar 

  10. L. Cao, H. Wan, L. Huo, and S. Xi, J. Colloid Interface Sci. 244, 97 (2001).

    Article  ADS  Google Scholar 

  11. P. Forzatti and L. Lietti, Heterogeneous Chem. Rev. 3, 33 (1996).

    Article  Google Scholar 

  12. G. Busca, L. Lietti, G. Ramis, and F. Berti, Appl. Catal. B 18, 1 (1998).

    Article  Google Scholar 

  13. I. Nova, L. Lietti, L. Casagrande, L. Dall’Acqua, E. Giamello, and P. Forzatti, Appl. Catal. B 17, 245 (1998).

    Article  Google Scholar 

  14. K. V. R. Chary, T. Bhaskar, G. Kishan, and V. Vijayakumar, J. Phys. Chem. B 102, 3936 (1998).

    Article  Google Scholar 

  15. M. del Arco, C. Martin, V. Rives, V. Sanchez-Escribano, G. Ramis, G. Busca, V. Lorenzelli, and P. Malet, J. Chem. Soc., Faraday Trans. 89, 1071 (1993).

    Article  Google Scholar 

  16. I. Shakir, M. Shahid, H. W. Yang, and D. J. Kang, Electrochim. Acta 56, 376 (2010).

    Article  Google Scholar 

  17. H. K. Park, W. H. Smyrk, and M. D. Ward, J. Electrochem. Soc. 142, 1068 (1995).

    Article  Google Scholar 

  18. B. Mendoza-Sanche, T. Brousse, C. Ramirez-Castro, V. Nicolosi, and P. Grant, Electrochim. Acta 91, 253 (2013).

    Article  Google Scholar 

  19. T. V. Sviridova, L. I. Stepanova, and D. V. Sviridov, in Molybdenum: Characteristics, Production and Applications, Ed. by M. Ortiz and T. Herrera (Nova Sci., New York, 2012), p.147.

  20. T. V. Sviridova, L. Yu. Sadovskaua, E. M. Shchukina, A. S. Logvinovich, D. G. Shchukin, and D. V. Sviridov, J. Photochem. Photobiol. A: Chem. 327, 44 (2016).

    Article  Google Scholar 

  21. S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).

    Article  ADS  Google Scholar 

  22. A. I. Kokorin, in Chemical Physics of Nanostructured Semiconductors, Ed. by A. I. Kokorin and D. W. Bahnemann (VSP-Brill Academic, Utrecht, Boston, 2003), p.203.

  23. E. A. Konstantinova, A. I. Kokorin, K. Lips, S. Sakthivel, and H. Kisch, Appl. Magn. Res. 35, 421 (2009).

    Article  Google Scholar 

  24. J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd ed. (Wiley, Hoboken, 2007), p.550.

    Google Scholar 

  25. L. Dall’Acqua, I. Nova, L. Lietti, G. Ramis, G. Busca, and E. Giamello, Phys. Chem. Chem. Phys. 2, 4991 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Minnekhanov.

Additional information

Original Russian Text © A.A. Minnekhanov, E.V. Vakhrina, E.A. Konstantinova, P.K. Kashkarov, 2018, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 107, No. 4, pp. 270–275.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minnekhanov, A.A., Vakhrina, E.V., Konstantinova, E.A. et al. Features of Charge Accumulation Processes in Nanoheterostructures Based on Titanium and Molybdenum Oxides. Jetp Lett. 107, 264–268 (2018). https://doi.org/10.1134/S0021364018040100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364018040100

Navigation