Skip to main content
Log in

Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors

  • Scientific Summaries
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high-T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T–x phase diagram correlates well with the available experimental data for cuprate HTSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. V. Sadovskii, Phys. Usp. 44, 515 (2001).

    Article  ADS  Google Scholar 

  2. E. Z. Kuchinskii and M. V. Sadovskii, JETP Lett. 88, 192 (2008).

    Article  ADS  Google Scholar 

  3. Y. A. Izyumov, Phys. Usp. 40, 445 (1997).

    Article  ADS  Google Scholar 

  4. N. Plakida, High-Temperature Cuprate Supercoductors Experiment, Theory, and Applications (Springer, Berlin, 2010).

    Book  Google Scholar 

  5. R. Zaitsev, J. Exp. Theor. Phys. 98, 780 (2004).

    Article  ADS  Google Scholar 

  6. N. Plakida, L. Anton, S. Adam, and Gh. Adam, J. Exp. Theor. Phys. 97, 331 (2003).

    Article  ADS  Google Scholar 

  7. A. A. Vladimirov, D. Ihle, and N. M. Plakida, Theor. Math. Phys. 152, 1331 (2007).

    Article  Google Scholar 

  8. M. Y. Kagan and T. M. Rice, J. Phys.: Condens. Matter 6, 3771 (1994).

    ADS  Google Scholar 

  9. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, JETP Lett. 75, 378 (2002).

    Article  ADS  Google Scholar 

  10. V. Val’kov and D. Dzebisashvili, J. Exp. Theor. Phys. 100, 608 (2005).

    Article  ADS  Google Scholar 

  11. S. Ovchinnikov, M. M. Korshunov, and E. I. Shneyder, J. Exp. Theor. Phys. 109, 775 (2009).

    Article  ADS  Google Scholar 

  12. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, JETP Lett. 103, 385 (2016).

    Article  ADS  Google Scholar 

  13. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  14. C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).

    Article  ADS  Google Scholar 

  15. J. E. Hirsch, Phys. Rev. Lett. 59, 228 (1987).

    Article  ADS  Google Scholar 

  16. F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).

    Article  ADS  Google Scholar 

  17. P. W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  18. A. Ramsak and P. Prelovsek, Phys. Rev. B 40, 2239 (1989).

    Article  ADS  Google Scholar 

  19. N. N. Bogoliubov, Lectures on Quantum Statistics (Naukova Dumka, Kiev, 1949; Gordon and Breach, New York, 1967, 1970).

    MATH  Google Scholar 

  20. A. Barabanov, L. Maksimov, and G. Uimin, JETP Lett. 47, 622 (1988).

    ADS  Google Scholar 

  21. J. Zaanen and A. M. Oles, Phys. Rev. B 37, 9423 (1988).

    Article  ADS  Google Scholar 

  22. P. Prelovsek, Phys. Lett. A 126, 287 (1988).

    Article  ADS  Google Scholar 

  23. A. Barabanov, V. Berezovskii, E. Zhasinas, and L. A. Maksimov, J. Exp. Theor. Phys. 83, 819 (1996).

    ADS  Google Scholar 

  24. R. O. Kuzian, R. Hayn, A. F. Barabanov, and L. A. Maksimov, Phys. Rev. B 58, 6194 (1998).

    Article  ADS  Google Scholar 

  25. A. Barabanov, R. Hayn, A. Kovalev, O. V. Urazaev, and A. M. Belemuk, J. Exp. Theor. Phys. 92, 677 (2001).

    Article  ADS  Google Scholar 

  26. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  ADS  Google Scholar 

  27. H. Mori, Prog. Theor. Phys. 33, 423 (1965).

    Article  ADS  Google Scholar 

  28. A. Barabanov, L. Maksimov, E. Zhasinas, and O. V. Urazaev, JETP Lett. 66, 173 (1997).

    Article  ADS  Google Scholar 

  29. J. Kondo and K. Yamaji, Prog. Theor. Phys. 47, 807 (1972).

    Article  ADS  Google Scholar 

  30. H. Shimahara and S. Takada, J. Phys. Soc. Jpn. 60, 2394 (1991).

    Article  ADS  Google Scholar 

  31. A. Barabanov and V. Berezovskii, J. Exp. Theor. Phys. 79, 627 (1994).

    ADS  Google Scholar 

  32. M. Ogata and H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008).

    Article  ADS  Google Scholar 

  33. B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 106, 036401 (2011).

    Article  ADS  Google Scholar 

  34. O. A. Starykh, O. F. de Alcantara Bonfim, and G. F. Reiter, Phys. Rev. B 52, 12534 (1995).

    Article  ADS  Google Scholar 

  35. T. Yoshida, X. J. Zhou, D. H. Lu, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, Z.-X. Shen, and A. Fujimori, J. Phys.: Condens. Matter 19, 125209 (2007).

    ADS  Google Scholar 

  36. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Article  ADS  Google Scholar 

  37. A. F. Barabanov, A. V. Mikheenkov, and A. V. Shvartsberg, Theor. Math. Phys. 168, 1192 (2011).

    Article  Google Scholar 

  38. W. Marshall, Proc. R. Soc. London A 232, 48 (1955).

    Article  ADS  Google Scholar 

  39. Y. A. Izyumov and M. Medvedev, Sov. Phys. JETP 32, 302 (1971).

    ADS  Google Scholar 

  40. B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Chen, M. Greven, M. A. Kastner, A. Aharony, Y. Endoh, R. W. Erwin, and G. Shirane, Phys. Rev. B 46, 14034 (1992).

    Article  ADS  Google Scholar 

  41. V. Barzykin and D. Pines, Phys. Rev. B 52, 13585 (1995).

    Article  ADS  Google Scholar 

  42. J. G. Tobin, C. G. Olson, C. Gu, J. Z. Liu, F. R. Solal, M. J. Fluss, R. H. Howell, J. C. O’Brien, H. B. Radousky, and P. A. Sterne, Phys. Rev. B 45, 5563 (1992).

    Article  ADS  Google Scholar 

  43. K. Gofron, J. C. Campuzano, H. Ding, C. Gu, R. Liu, B. Dabrowski, B. W. Veal, W. Cramer, and G. Jennings, J. Phys. Chem. Sol. 54, 1193 (1993).

    Article  ADS  Google Scholar 

  44. A. A. Abrikosov, J. C. Campuzano, and K. Gofron, Phys. C: Supercond. 214, 73 (1993).

    Article  ADS  Google Scholar 

  45. D. S. Dessau, Z.-X. Shen, D. M. King, D. S. Marshall, L. W. Lombardo, P. H. Dickinson, A. G. Loeser, J. DiCarlo, C.-H. Park, A. Kapitulnik, and W. E. Spicer, Phys. Rev. Lett. 71, 2781 (1993).

    Article  ADS  Google Scholar 

  46. D. M. King, Z. X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, W. E. Spicer, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. Lett. 73, 3298 (1994).

    Article  ADS  Google Scholar 

  47. P. Aebi, J. Osterwalder, P. Schwaller, L. Schlapbach, M. Shimoda, T. Mochiku, and K. Kadowaki, Phys. Rev. Lett. 72, 2757 (1994).

    Article  ADS  Google Scholar 

  48. S. V. Borisenko, M. S. Golden, S. Legner, T. Pichler, C. Dürr, M. Knupfer, J. Fink, G. Yang, S. Abell, and H. Berger, Phys. Rev. Lett. 84, 4453 (2000).

    Article  ADS  Google Scholar 

  49. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, Phys. Lett. A 379, 421 (2015).

    Article  Google Scholar 

  50. V. Val’kov and F. Fedoseev, Theor. Math. Phys. 168, 1216 (2011).

    Article  Google Scholar 

  51. J. M. Tranquada, A. H. Moudden, A. I. Goldman, P. Zolliker, D. E. Cox, G. Shirane, S. K. Sinha, D. Vaknin, D. C. Johnston, M. S. Alvarez, A. J. Jacobson, J. T. Lewandowski, and J. M. Newsam, Phys. Rev. B 38, 2477 (1988).

    Article  ADS  Google Scholar 

  52. M. S. Hybertsen, M. Schlüter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Original Russian Text © V.V. Val’kov, D.M. Dzebisashvili, A.F. Barabanov, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 104, No. 10, pp. 745–757.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V., Dzebisashvili, D.M. & Barabanov, A.F. Spin-polaron nature of fermion quasiparticles and their d-wave pairing in cuprate superconductors. Jetp Lett. 104, 730–741 (2016). https://doi.org/10.1134/S002136401622015X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401622015X

Navigation