Skip to main content
Log in

On drag reduction in a two-phase flow

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Bubbles collected on a local hydrophobic surface with nanocoating in a two-phase flow in a minichannel have been detected experimentally. It has been proposed to use the effect of concentration of gas bubbles on hydrophobic segments of the surface of the channel with contrast wettability for ensuring drag reduction. A two-dimensional flow model with the Navier slip condition in the region of the bubble layer gives criteria of drag reduction, depending on the slip length, dimension of bubbles, and dimension of the segment with nanocoating. The presence of the bubble layer on half of the surface of the channel can increase the flow rate of a liquid flowing through the channel by 40% at a fixed pressure gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. M. Squires and S. R. Quake, Rev. Mod. Phys. 77, 977 (2005).

    Article  ADS  Google Scholar 

  2. H. A. Stone, A. D. Stroock, and A. Ajdari, Ann. Rev. Fluid Mech. 36, 381 (2004).

    Article  ADS  Google Scholar 

  3. J. Ou, B. Perot, and J. P. Rothstein, Phys. Fluids 16, 4635 (2004).

    Article  ADS  Google Scholar 

  4. E. Karatay, A. S. Haase, C. W. Visser, C. Sun, D. Lohse, P. A. Tsai, and R. G. H. Lammertnik, Proc. Natl. Acad. Sci. 110, 8422 (2013).

    Article  ADS  Google Scholar 

  5. J. P. Rothstein, Ann. Rev. Fluid Mech. 42, 89 (2010).

    Article  ADS  Google Scholar 

  6. D. Byun, J. Kim, H. S. Ko, and H. C. Park, Phys. Fluids 20, 113601 (2008).

    Article  ADS  Google Scholar 

  7. V. S. Ajaev, E. Y. Gatapova, and O. A. Kabov, Phys. Rev. E 84, 041606 (2011).

    Article  ADS  Google Scholar 

  8. C. Ketelaar, Interfacial Phenom. Heat Transfer 2, 181 (2014).

    Article  Google Scholar 

  9. European Patent No. 2028432A1 (2009).

  10. O. A. Kabov, V. Cheverda, F. Biondi, D. Zaytsev, S. Chikov, P. Queeckers, M. Marengo, L. Araneo, R. Rioboo, J. de Coninck, A. Glushchuk, E. Bykovskaya, C. Iorio, B. Bourdon, and M. Memoli, in Proceedings of the 5th International Topical Team Workshop on Two-Phase Systems for Ground and Space Applications (Kyoto, Japan, 2010).

    Google Scholar 

  11. R. Rioboo, M. Marengo, S. Dall’Olio, M. Voue, and J. de Coninck, Langmuir 25, 6005 (2009).

    Article  Google Scholar 

  12. D. A. Labuntsov and V. V. Yagov, Mechanics of Two-Phase Systems (Izd. dom MEI, Moscow, 2007), p. 384 [in Russian].

    Google Scholar 

  13. D. Brutin, V. S. Ajaev, and L. Tadrist, Appl. Therm. Eng. 51, 1317 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ya. Gatapova.

Additional information

Original Russian Text © E.Ya. Gatapova, V.S. Ajaev, O.A. Kabov, 2015, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2015, Vol. 101, No. 3, pp. 176–180.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gatapova, E.Y., Ajaev, V.S. & Kabov, O.A. On drag reduction in a two-phase flow. Jetp Lett. 101, 160–163 (2015). https://doi.org/10.1134/S0021364015030042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364015030042

Keywords

Navigation