Skip to main content
Log in

Current-voltage characteristic of the contact of a plasma with an electrode with a thin dielectric film on the surface

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A model of the current flowing in the contact of a plasma with an electrode with a thin dielectric film on the surface has been developed to describe the observed features of the current-voltage characteristics of such a contact: a segment with small current near the floating potential corresponding to the film recharging and a segment with large current, where the mechanism of field electron emission through the film into the plasma occurs, leading to an N-shaped current-voltage characteristic. Such current-voltage characteristics are observed for W, Al, and Ta electrodes with a self-oxide film and for a stainless steel electrode with a silicon oxide film in a beam-plasma discharge in hydrogen. The model is based on the calculation of the equilibrium potential of the film surface faced to the plasma for the region of the negative bias of the electrode with respect to the plasma potential. Balance involves currents of ions and electrons from the plasma, secondary emission currents, and field electron emission current from the electrode into the plasma through the insulator. The film recharging voltage calculated within the model is in exact agreement with experimental data. This allows the determination of the thickness of the dielectric layer on the electrode surface from its current-voltage characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. M. Gutorov, I. V. Vizgalov, E. A. Markina, and V. A. Kurnaev, Bull. Russ. Acad. Sci.: Phys. 74, 188 (2010).

    Article  Google Scholar 

  2. K. M. Gutorov, V. A. Kurnaev, and I. V. Vizgalov, in Proceedings of the 28th International Conference on Phenomena in Ionized Gases ICPIG, Prague, July 15–20, 2007 (2007), p. 378.

    Google Scholar 

  3. K. M. Gutorov, I. V. Vizgalov, and V. A. Kurnaev, Plasma Phys. Rep. 38, 1050 (2012).

    Article  ADS  Google Scholar 

  4. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005).

    Book  Google Scholar 

  5. Y. P. Raizer, Gas Discharge Physics (Springer, New York, 1991).

    Book  Google Scholar 

  6. F. F. Chen, Plasma Sources Sci. Technol. 21, 055013 (2012).

    Article  ADS  Google Scholar 

  7. V. A. Godyak and V. I. Demidov, J. Phys. D: Appl. Phys. 44, 233001 (2011).

    Article  ADS  Google Scholar 

  8. K. V. Rudenko, A. V. Myakon’kikh, A. A. Orlikovsky, and A. N. Pustovit, Russ. Microelectron. 36, 14 (2007).

    Article  Google Scholar 

  9. C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).

    Article  ADS  Google Scholar 

  10. G. Fursey, Field Emission in Vacuum Microelectronics (Kluwer Academic, Plenum Publishers, New York, 2005).

    Google Scholar 

  11. H.-J. Fitting, N. Cornet, M. Touzin, D. Goeuriot, C. Guerret-Piecourt, and D. Treheux, J. Eur. Ceram. Soc. 27, 3977 (2007).

    Article  Google Scholar 

  12. W. Zhu, G. P. Kochanski, and S. Jin, Science 282, 1471 (1998).

    Article  Google Scholar 

  13. G. G. Bondarenko, A. P. Korzhavyi, and D. K. Nikiforov, J. Adv. Mater. 1, 224 (2007).

    Google Scholar 

  14. V. Samara, J.-P. Booth, J.-F. de Marneffe, A. P. Milenin, M. Brouri, and W. Boullart, Plasma Sources Sci. Technol. 21, 065004 (2012).

    Article  ADS  Google Scholar 

  15. P. Spatenka, R. Studeny, and H. Suhr, Meas. Sci. Technol. 3, 704 (1992).

    Article  ADS  Google Scholar 

  16. A. V. Miakonkikh and K. V. Rudenko, Proc. SPIE 7521, 75210A–1 (2010).

    Article  ADS  Google Scholar 

  17. M. V. Nezlin, Physics of Intense Beams in Plasmas (IOP Publ., London, 1993).

    Google Scholar 

  18. P. H. Dawson, J. Appl. Phys. 37, 3644 (1966).

    Article  ADS  Google Scholar 

  19. R. A. Baragiola, E. V. Alonso, and A. Olivia-Florio, Phys. Rev. B 19, 121 (1979); E. V. Alonso, R. A. Baragiola, J. Ferron, M. M. Jakas, and A. Olivia-Florio, Phys. Rev. A 20, 80 (1980).

    Article  ADS  Google Scholar 

  20. H. Spanner, Ann. Phys. 75, 609 (1924).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Gutorov.

Additional information

Original Russian Text © K.M. Gutorov, I.V. Vizgalov, I.A. Sorokin, F.S. Podolyako, 2014, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 100, No. 11, pp. 807–810.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutorov, K.M., Vizgalov, I.V., Sorokin, I.A. et al. Current-voltage characteristic of the contact of a plasma with an electrode with a thin dielectric film on the surface. Jetp Lett. 100, 708–711 (2015). https://doi.org/10.1134/S0021364014230064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364014230064

Keywords

Navigation