Skip to main content
Log in

On triggering role of carrier mobility for Laughlin state organization

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Recent experiments with suspended graphene have corroborated an important role of carrier mobility in the competition between Laughlin state and insulating state, presumably of Wigner-type electron crystal. Moreover, the fractional quantum Hall effect (FQHE) in graphene has been observed at low carrier densities when the interaction was reduced due to carrier dilution. This suggests that not solely interaction and the flat band with quenched kinetic energy may be important for formation of FQHE. Here, some exclusive for 2D topological arguments are supposed to explain the triggering role of carrier mobility in formation of the collective FQHE state, when conditions of sufficient flattening of a band and interaction presence are fulfilled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

    Article  ADS  Google Scholar 

  2. F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. R. E. Prange and S. M. Girvin, The Quantum Hall Effect (Springer, New York, 1990).

    Book  Google Scholar 

  4. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

    Article  ADS  Google Scholar 

  5. O. Heinonen, Composite Fermions (World Scientific, Singapore, 1998).

    Book  Google Scholar 

  6. J. K. Jain, Composite Fermions (Cambridge Univ. Press, Cambridge, 2007).

    Book  MATH  Google Scholar 

  7. K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Störmer, and P. Kim, Nature 462, 196 (2009).

    Article  ADS  Google Scholar 

  8. X. Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature 462, 192 (2009).

    Article  ADS  Google Scholar 

  9. L. Pfeiffer and K. W. West, Physica E 20, 57 (2003).

    Article  ADS  Google Scholar 

  10. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  MATH  Google Scholar 

  11. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  12. K. Yang, Solid State Commun. 143, 27 (2007).

    Article  ADS  Google Scholar 

  13. A. K. Geim and A. H. MacDonald, Phys. Today 8, 35 (2007).

    Article  Google Scholar 

  14. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature 438, 197 (2005).

    Article  ADS  Google Scholar 

  15. Y. Zhang, Y.-W. Tan, H. L. Störmer, and F. Kim, Nature 438, 201 (2005).

    Article  ADS  Google Scholar 

  16. J. W. MacClure, Phys. Rev. 104, 666 (1956).

    Article  ADS  Google Scholar 

  17. Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudov, J. A. Jaszczak, H. L. Störmer, and P. Kim, Phys. Rev. Lett. 96, 136806 (2006).

    Article  ADS  Google Scholar 

  18. D. A. Abanin, I. Skachko, X. Du, E. Y. Andrei, and L. S. Levitov, Phys. Rev. B 81, 115410 (2010).

    Article  ADS  Google Scholar 

  19. I. Skachko, X. Du, F. Duerr, A. Luican, D. A. Abanin, L. S. Levitov, and E. Y. Andrei, Philos. Trans. R. Soc. A 368, 5403 (2010).

    Article  ADS  MATH  Google Scholar 

  20. C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard, Nature Phys. 7, 693 (2011).

    Article  ADS  Google Scholar 

  21. J. Jacak, I. Jó wiak, and L. Jacak, Phys. Lett. A 374, 346 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Jacak, I. Jóźwiak, L. Jacak, and K. Wieczorek, J. Phys.: Condens. Matter 22, 355602 (2010).

    Google Scholar 

  23. M. G. Laidlaw and C. M. DeWitt, Phys. Rev. D 3, 1375 (1971).

    Article  ADS  Google Scholar 

  24. J. Jacak and L. Jacak, Europhys. Lett. 92, 60002 (2010).

    Article  ADS  Google Scholar 

  25. P. W. Eliutin and W. D. Krivchenkov, Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  26. M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).

    Article  ADS  Google Scholar 

  27. B. I. Halperin, Helv. Phys. Acta 56, 75 (1983).

    Google Scholar 

  28. M. O. Goerbig and N. Regnault, Phys. Rev. B 75, 241405 (2007).

    Article  ADS  Google Scholar 

  29. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Störmer, Solid State Commun. 146, 351 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jacak.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacak, J., Jacak, L. On triggering role of carrier mobility for Laughlin state organization. Jetp Lett. 98, 684–688 (2014). https://doi.org/10.1134/S0021364013240090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364013240090

Keywords

Navigation