Skip to main content
Log in

Investigation of LiFeAs by means of “break-junction” technique

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In our tunneling investigation using Andreev superconductor-normal metal-superconductor contacts on LiFeAs single crystals we observed two reproducible independent subharmonic gap structures at dynamic conductance characteristics. From these results, we can derive the energy of the large superconducting gap ΔL = (2.5–3.4) meV and the small gap ΔS = (0.9–1) meV at T = 4.2 K for the T localC ≈ (10.5–14) K (the contact area critical temperature which deviation causes the variation of ΔL). The BCS-ratio is found to be 2ΔL/k B T C = 4.6–5.6, whereas 2ΔS/k B T C ≪ 3.52 results from induced superconductivity in the bands with the small gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, H. Hiramatsu, M. Hirano, et al., J. Am. Chem. Soc. 128, 10012 (2006); J. Am. Chem. Soc. 130, 3296 (2008).

    Article  Google Scholar 

  2. X. C. Wang, Q. Q. Liu, Y. X. Lv, et al., Solid State Commun. 148, 538 (2008); J. H. Tapp, Z. Tang, B. Lv, et al., Phys. Rev. B 78, 060505(R) (2008).

    Article  ADS  Google Scholar 

  3. S. V. Borisenko, V. B. Zabolotnyy, D. V. Evtushinsky, et al., Phys. Rev. Lett. 105, 067002 (2010).

    Article  ADS  Google Scholar 

  4. O. Heyer, T. Lorenz, V. B. Zabolotnyy, et al., Phys. Rev. B 84, 064512 (2011).

    Article  ADS  Google Scholar 

  5. D. J. Singh and M.-H. Du, Phys. Rev. Lett. 100, 237003 (2008); D. J. Singh, Physica C 469, 418 (2009).

    Article  ADS  Google Scholar 

  6. I. A. Nekrasov, Z. V. Pchelkina, and M. V. Sadovskii, JETP Lett. 88, 144 (2008).

    Article  ADS  Google Scholar 

  7. A. I. Coldea, J. D. Fletcher, A. Carrington, et al., Phys. Rev. Lett. 101, 216402 (2008).

    Article  ADS  Google Scholar 

  8. S. Raghu, X.-L. Qi, C.-X. Liu, et al., Phys. Rev. B 77, 220503(R) (2008).

    Article  ADS  Google Scholar 

  9. J. Li and Y.-P. Wang, Chin. Phys. Lett. 25, 2232 (2008).

    Article  ADS  Google Scholar 

  10. E. Z. Kurmaev, J. A. McLeod, N. A. Skorikov, et al., J. Phys.: Condens. Matter 21, 345701 (2009).

    Article  Google Scholar 

  11. T. Miyake, K. Nakamura, R. Arita, and M. Imada, J. Phys. Soc. Jpn. 79, 044705 (2010).

    Article  ADS  Google Scholar 

  12. C. Platt, R. Thomale, and W. Hanke, Phys. Rev. B 84, 235121 (2011).

    Article  ADS  Google Scholar 

  13. R. A. Jishi and H. M. Alyahyaei, Adv. Cond. Mat. Phys. 2010, 804343 (2010).

    Google Scholar 

  14. I. A. Nekrasov, Z. V. Pchelkina, and M. V. Sadovskii, JETP Lett. 88, 543 (2008).

    Article  ADS  Google Scholar 

  15. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 91, 518 (2010).

    Article  ADS  Google Scholar 

  16. R. H. Liu, T. Wu, G. Wu, et al., Nature 459, 64 (2009).

    Article  ADS  Google Scholar 

  17. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. L. Boeri, O. V. Dolgov, and A. A. Golubov, Physica C 469, 628 (2009).

    Article  ADS  Google Scholar 

  19. A. A. Abrikosov, Physica C 317-318, 154 (1999).

    Article  ADS  Google Scholar 

  20. A. A. Kordyuk, V. B. Zabolotnyy, D. V. Evtushinsky, et al., Phys. Rev. B 83, 134513 (2011).

    Article  ADS  Google Scholar 

  21. I. Morozov, A. Boltalin, O. Volkova, et al., Cryst. Growth Design 10, 4428 (2010).

    Article  Google Scholar 

  22. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).

    Article  ADS  Google Scholar 

  23. J. Müller, J. M. van Ruitenbeek, and L. J. de Jongh, Physica C 191, 485 (1992).

    Article  ADS  Google Scholar 

  24. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, et al., Phys. Rev. B 79, 224517 (2009).

    Article  ADS  Google Scholar 

  25. Ya. G. Ponomarev and A. V. Rakhmanina, Prib. Tekh. Eksp. 5, 120 (1970).

    Google Scholar 

  26. I. R. Shein and A. L. Ivanovskii, JETP Lett. 88, 329 (2008).

    Article  ADS  Google Scholar 

  27. U. Stockert, M. Abdel-Hafiez, D. V. Evtushinsky, et al., Phys. Rev. B 83, 224512 (2011).

    Article  ADS  Google Scholar 

  28. D. S. Inosov, J. S. White, D. V. Evtushinsky, et al., Phys. Rev. Lett. 104, 187001 (2010).

    Article  ADS  Google Scholar 

  29. A. F. Andreev, Sov. Phys. JETP 19, 1228 (1964).

    Google Scholar 

  30. R. Kümmel, U. Gunsenheimer, and R. Nicolsky, Phys. Rev. B 42, 3992 (1990).

    Article  ADS  Google Scholar 

  31. Yu. V. Sharvin, Sov. Phys. JETP 21, 655 (1965).

    ADS  Google Scholar 

  32. B. A. Aminov, A. A. Golubov, and M. Yu. Kupriyanov, Phys. Rev. B 53, 365 (1996).

    Article  ADS  Google Scholar 

  33. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, et al., Solid State Commun. 129, 85 (2004).

    Article  ADS  Google Scholar 

  34. Ya. G. Ponomarev, S. A. Kuzmichev, N. M. Kadomtseva, et al., JETP Lett. 79, 484 (2004).

    Article  ADS  Google Scholar 

  35. S. A. Kuzmichev, T. E. Shanygina, S. N. Tchesnokov, and S. I. Krasnosvobodtsev, Solid State Commun. 152, 119 (2012).

    Article  ADS  Google Scholar 

  36. T. E. Shanygina, Ya. G. Ponomarev, S. A. Kuzmichev, et al., JETP Lett. 93, 94 (2011).

    Article  ADS  Google Scholar 

  37. V. M. Pudalov, O. E. Omel’yanovskii, E. P. Khlybov, et al., Phys. Usp. 54, 648 (2011).

    Article  ADS  Google Scholar 

  38. T. E. Shanygina, Ya. G. Ponomarev, S. A. Kuzmichev, et al., J. Phys.: Conf. Ser. (2012, in press).

  39. Ya. G. Ponomarev, S. A. Kuzmichev, M. G. Mikheev, et al., JETP 140, 527 (2011).

    Google Scholar 

  40. H. Nakamura, M. Machida, T. Koyama, and N. Hamada, Phys. Soc. Jpn. 78, 123712 (2009).

    Article  ADS  Google Scholar 

  41. T. Matsui, H. Ohta, and R. Hayashi, Jpn. J. Appl. Phys. 25, L671 (1986).

    Article  ADS  Google Scholar 

  42. Ya. G. Ponomarev, K. K. Uk, M. A. Lorentz, et al., Inst. Phys. Conf. Ser. 167, 241 (2000).

    Google Scholar 

  43. E. Heumen, J. Vuorinen, K. Koepernik, et al., Phys. Rev. Lett. 106, 027002 (2011).

    Article  ADS  Google Scholar 

  44. V. A. Moskalenko, Phys. Met. Metall. 4, 503 (1959).

    Google Scholar 

  45. H. Suhl, B. T. Matthias, L. R. Walker, et al., Phys. Rev. Lett. 12, 552 (1959).

    Article  ADS  Google Scholar 

  46. F. Wei, F. Chen, K. Sasmal, et al., Phys. Rev. B 81, 134527 (2010).

    Article  ADS  Google Scholar 

  47. Y. J. Song, J. S. Ghim, J. H. Yoon, et al., Europhys. Lett. 94, 57008 (2011).

    Article  ADS  Google Scholar 

  48. H. Kim, M. A. Tanatar, Y. J. Song, et al., Phys. Rev. B 83, 100502(R) (2011).

    ADS  Google Scholar 

  49. Y. Imai, H. Takahashi, K. Kitagawa, et al., J. Phys. Soc. Jpn. 80, 013704 (2011).

    Article  ADS  Google Scholar 

  50. K. Sasmal, B. Lv, Z. Tang, et al., Phys. Rev. B 81, 144512 (2010).

    Article  ADS  Google Scholar 

  51. I. K. Yanson, V. V. Fisun, N. L. Bobrov, et al., Phys. Rev. B 67, 024517 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuzmichev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuzmichev, S.A., Shanygina, T.E., Morozov, I.V. et al. Investigation of LiFeAs by means of “break-junction” technique. Jetp Lett. 95, 537–543 (2012). https://doi.org/10.1134/S0021364012100086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364012100086

Keywords

Navigation