Skip to main content
Log in

Temperature Sensing Characteristics of Improved SNCS Fiber Sensor

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

For optical fiber sensor with single-mode-no-core-single-mode (SNCS) structure, the basic principle of SNCS structure sensing is to change the mode field distribution of SNCS structure by changing the refractive index distribution of the structure. The sensitivity can be improved by optimizing the structure or changing the material of the sensitive region. In this paper, the effects of structural parameters and assembly materials on the sensitivity of SNCS optical fiber sensor are studied by far from the cut-off condition. The correctness of these conclusions is verified by experiments. For the temperature sensor, the material with large thermal optical coefficient (TOC) can be used as the cladding or fiber core to improve the sensitivity of the sensor. These conclusions provide some reference for the design and assembly of temperature sensor with SNCS structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Wu, Q., Semenova, Y., Wang, P., and Farrell, G., Opt. Express, 2011, vol. 19, no. 9, p. 7937. https://doi.org/10.1364/OE.19.007937

    Article  ADS  Google Scholar 

  2. Aguilar-Soto, J.G., Antonio-Lopez, J.E., Sanchez-Mondragon, J.J., Li KamWa, P., Arredondo Lucio, J.A., and May-Arrioja, D.A., Proc. Latin America Optics and Photonics Conference, Recife, September 27–30, 2010. https://doi.org/10.1364/LAOP.2010.WE28

  3. Xu, W., Shi, J., Yang, X., Xu, D., Rong, F., Zhao, J., and Yao, J., Sensors, 2017, vol. 17, p. 2240. https://doi.org/10.3390/s17102240

    Article  ADS  Google Scholar 

  4. Chen, Y., Han, Q., Liu, T., Lan, X., and Xiao, H., Opt. Lett., 2013, vol. 38, p. 3999. https://doi.org/10.1364/OL.38.003999

    Article  ADS  Google Scholar 

  5. Hu, P., Chen, Z., Yang, M., Yang, J., and Zhong, C., Sens. Actuators, A, 2015, vol. 223, p. 114. https://doi.org/10.1016/j.sna.2015.01.009

    Article  Google Scholar 

  6. Su, G., Shi, J., Xu, D., Zhang, H., Xu, W., Wang, Y., Feng, J., and Yao, J., IEEE Sens. J., 2016, vol. 16, p. 8489. https://doi.org/10.1109/JSEN.2016.2614691

    Article  Google Scholar 

  7. Socorro, A.B., Santamaría, E., Fernandez-Irigoyen, J., Villar, I.D., Corres, J.M., Arregui, F.J., and Matias, I.R., IEEE J. Sel. Top. Quantum Electron., 2017, vol. 23, p. 314. https://doi.org/10.1109/JSTQE.2016.2633819

    Article  ADS  Google Scholar 

  8. Bhardwaj, V. and Singh, V.K., Sens. Actuators, A, 2017, vol. 254, p. 95. https://doi.org/10.1016/j.sna.2016.12.015

    Article  Google Scholar 

  9. Li, C., Ning, T., Wen, X., Li, J., Zhang, C., and Zhang, C., Opt. Laser Technol., 2015, vol. 72, p. 104. https://doi.org/10.1016/j.optlastec.2015.03.014

    Article  ADS  Google Scholar 

  10. Fuentes-Fuentes, M.A., May-Arrioja, D.A., Guzman-Sepulveda, J.R., Torres-Cisneros, M., and Sánchez-Mondragón, J.J., Sensors, 2015, vol. 15, no. 10, p. 26929. https://doi.org/10.3390/s151026929

    Article  ADS  Google Scholar 

  11. Zhang, R., Pu, S., and Li, X., Sensors, 2019, vol. 19, p. 4345. https://doi.org/10.3390/s19194345

    Article  ADS  Google Scholar 

  12. Hu, H., Song, X., Han, Q., Chang, P., Zhang, J., Liu, K., Du, Y., Wang, H., and Liu, T., IEEE Sens. J., 2020, vol. 20, no. 6, p. 2967. https://doi.org/10.1109/JSEN.2019.2956559

    Article  ADS  Google Scholar 

  13. Fabián, N.S., Socorro-Leránoz, A.B., Villar, I.D., Díaz, S., and Matías, I.R., J. Lightwave Technol., 2019, vol. 37, no. 15, p. 3844. https://doi.org/10.1109/JLT.2019.2921609

    Article  ADS  Google Scholar 

  14. Zhang, Y., Liao, C., Lin, C., Shao, Y., Wang, Y., and Wang, Y., Opt. Lett., 2019, vol. 44, no. 10, p. 2434. https://doi.org/10.1364/OL.44.002434

    Article  ADS  Google Scholar 

  15. Wang, F., Pang, K., Ma, T., Wang, X., and Liu, Y., Opt. Laser Technol., 2020, vol. 130, p. 106333. https://doi.org/10.1016/j.optlastec.2020.106333

    Article  Google Scholar 

  16. Kapany, N.S. and Burke, J.J., Optical Waveguides, New York: Academic, 1972, chap. 6, pp. 180–222.

    Google Scholar 

  17. Mohammed, W.S., Mehta, A., and Johnson, E.G., J. Lightwave Technol., 2004, vol. 22, p. 469. https://doi.org/10.1109/JLT.2004.824379

    Article  ADS  Google Scholar 

  18. Okamoto, K., Fundamentals of Optical Waveguides, Burlington, MA: Academic, 2006, chap. 3, pp. 71–75.

    Google Scholar 

  19. Wang, Q., Farrell, G., and Yan, W., J. Lightwave Technol., 2008, vol. 26, no. 5, p. 512. https://doi.org/10.1109/JLT.2007.915205

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge financial support from the following sources: Henan Postdoctoral Foundation (no. 255449), Award Fund of Henan Key Laboratory (no. 22110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Sun.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, D., Yang, X. et al. Temperature Sensing Characteristics of Improved SNCS Fiber Sensor. Instrum Exp Tech 65, 957–965 (2022). https://doi.org/10.1134/S0020441222060082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441222060082

Navigation