Skip to main content
Log in

Novel Technologies for Compact Electron Linear Accelerators (Review)

  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

This paper reviews new technologies that make it possible to implement such modern principles of development and creation of applied linear electron accelerators as modularity, miniaturization, and cost reduction. The development of accelerators in this direction became possible due to the emergence of technologies such as compact sources of radio-frequency (RF) power supply and efficient approaches to the fabrication of accelerating structures, as well as an increase in accelerating gradients and a decrease in the power of RF losses in structures. The review is based on the author’s experience in developing compact accelerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

Notes

  1. The radio frequency bands have different designations (according to GOST, IEEE, etc.) in different areas of their use, therefore, we present the designations we use and the corresponding frequency bands: S, 2–4 GHz, C – 4–8 GHz, X – 8–12 GHz, Ku – 12–18 GHz, K – 18–27 GHz, Ka, 27–40 GHz.

REFERENCES

  1. Kutsaev, S.V., Tech. Phys., 2021, vol. 66, no. 2, p. 161. https://doi.org/10.1134/S1063784221020158

    Article  Google Scholar 

  2. Evans, L. and Bryant, P., J. Instrum., 2008, vol. 3, no. 8, p. 8001. https://doi.org/10.1088/1748-0221/3/08/S08001

    Article  Google Scholar 

  3. Feder, T., Phys. Today, 2010, vol. 63, no. 2, p. 20. https://doi.org/10.1063/1.3326981

    Article  ADS  Google Scholar 

  4. Hamm, R.W. and Hamm, M.E., Phys. Today, 2011, vol. 64, no. 6, p. 46. https://doi.org/10.1063/1.3603918

    Article  Google Scholar 

  5. Zavadtsev, A.A., Zavadtsev, D.A., Krasnov, A.A., Sobenin, N.P., Kutsaev, S.V., Churanov, D.V., and Urbant, M.O., Instrum. Exp. Tech., 2011, vol. 54, no. 2, pp. 241–248. https://doi.org/10.1134/S0020441211020114

    Article  Google Scholar 

  6. Kutsaev, S.V., Agustsson, R., Arodzero, A., Berry, R., Boucher, S., Diego, A., Gavryushkin, D., Hartzell, J.J., Lanza, R.C., Smirnov, A.Yu., Verma, A., and Ziskin, V., Radiat. Phys. Chem., 2021, vol. 183, p. 109398. https://doi.org/10.1016/j.radphyschem.2021.109398

    Article  Google Scholar 

  7. Arodzero, A., Boucher, S., Kutsaev, S.V., and Ziskin, V., IEEE Trans. Nucl. Sci., 2017, vol. 64, no. 7, p. 1629. https://doi.org/10.1109/TNS.2016.2638967

    Article  ADS  Google Scholar 

  8. Kutsaev, S.V., Agustsson, R., Arodzero, A., Boucher, S., Burstein, P., and Smirnov, A.Yu., AIP Conf. Proc., 2019, vol. 2160, p. 050014. https://doi.org/10.1063/1.5127706

    Article  Google Scholar 

  9. Kutsaev, S.V., Agustsson, R., Arodzero, A., Boucher, S., Harzell, J.J., Murokh, A., O’Shea, F., and Smirnov, A.Yu., Phys. Procedia, 2017, vol. 90, p. 115. https://doi.org/10.1016/j.phpro.2017.09.036

    Article  ADS  Google Scholar 

  10. Yu, V.Y., Landers, A., Woods, K., Nguyen, D., Cao, M., Du, D., Chin, R.K., Sheng, K., and Kaprealian, T.B., Int. J. Radiat. Oncol., Biol., Phys., 2018, vol. 101, no. 1, p. 144. https://doi.org/10.1016/j.ijrobp.2018.01.048

    Article  Google Scholar 

  11. Kutsaev, S.V., Agustsson, R., Arodzero, A., Berry, R., Bezhanov, A., Boucher, S., Chimalpopoca, O., Diego, A., Faillace, L., Gavryushkin, D., Harrison, M., Hartzell, J.J., McNevin, J., Ruelas, M.A., Smirnov, A.Yu., et al., Radiat. Phys. Chem., 2021, vol. 184, p. 109494. https://doi.org/10.1016/j.radphyschem.2021.109494

    Article  Google Scholar 

  12. Olivo, R.A., Da Silva, M.V., Garcia, F.B., Soares, S., Rodrigues, V., and Morales-Souza, H., Rev. Bras. Hematol. Hemoter., 2015, vol. 37, no. 3, p. 153. https://doi.org/10.1016/j.bjhh.2015.03.001

    Article  Google Scholar 

  13. Bendahan, J., Nucl. Instrum. Methods Phys. Res., Sect. A, 2020, vol. 954, p. 161120. https://doi.org/10.1016/j.nima.2018.08.079

    Article  Google Scholar 

  14. Fanchi, J.R., Integrated Reservoir Asset Management, Houston, TX: Gulf Professional Publ., 2010.

    Google Scholar 

  15. Cameron, J.F. and Clayton, C.G., Radioisotope Instruments, Oxford: Pergamon, 1971.

    Book  Google Scholar 

  16. Global Markets for Sterilization Technologies, BCC Publ., 2017.

  17. Low- and Middle-Income Countries. https://wellcome.org/grant-funding/guidance/lowand-middle-income-countries.

  18. World Population by Income, Pew Research Center. https://www.pewresearch.org/global/interactives/global-population-by-income/.

  19. Bassaler, J.M., Capdevila, J.M., Gal, O., Lainé, F., Nguyen, A., Nicolaï, J.P., and Umiastowski, K., Nucl. Instrum. Methods Phys. Res., Sect. B, 1992, vol. 68, nos. 1–4, p. 92. https://doi.org/10.1016/0168-583X(92)96056-5

    Article  Google Scholar 

  20. Bystrov, P.A., Gordeev, A.V., Kolokolova, A.Yu., Zav’yalov, M.A., Ilyukhina, N.V., Molin, A.A., Pav-lov, Yu.S., Polyakova, S.P., Prokopenko, A.V., and Filippovich, V.P., Yad. Fiz. Inzh., 2018, vol. 9, no. 2, p. 211.

    Google Scholar 

  21. Massat, M.B., Appl. Radiat. Oncol., 2019, vol. 8, no. 2, p. 44.

    Google Scholar 

  22. Chernyaev, A.P. and Varzar, S.M., Phys. At. Nucl., 2014, vol. 77, no. 10, pp. 1203–1215. https://doi.org/10.1134/S1063778814100032

    Article  Google Scholar 

  23. Brady, L.W. and Yaeger, T.E., Encyclopedia of Radiation Oncology, Berlin: Springer, 2013.

    Book  Google Scholar 

  24. Hanna, S., RF Linear Accelerators for Medical and Industrial Applications, Boston: Artech House, 2012.

    Google Scholar 

  25. Khan, F.M., The Physics of Radiation Therapy, Philadelphia, PA: Lippincott Williams & Wilkins, 2009.

    Google Scholar 

  26. e2v Magnetrons. https://www.teledyne-e2v.com/ products/rf-power/medical-magnetrons/.

  27. Scandinova Systems. https://scandinovasystems.com/.

  28. CPI Power Tubes. https://www.cpii.com/product.cfm /8/2.

  29. Belousov, A.V., Bliznyuk, U.A., Varzar’, S.M., Zagoruiko, M.V., Osipov, A.S., and Chernyaev, A.P., Med. Fiz., 2014, vol. 61, no. 1, p. 113.

    Google Scholar 

  30. Sobenin, N.P., Kaminskii, V.I., and Lalayan, M.V., Uskoryayushchie struktury (Accelerating Structures), Moscow: National Research Nuclear Univ. “Moscow Engineering Physics Institute,” 2005.

  31. Andrés, S.V., MSc Thesis, Valencia: Univ. de Valencia, 2013.

  32. Wangler, T.P., RF Linear Accelerators, John Wiley and Sons, 2008.

    Book  Google Scholar 

  33. Handbook of Medical Imaging, vol. 1: Physics and Psychophysics, Van Metter, R.L., Beutel, J., and Kundel, H.L., Eds., SPIE, 2000.

  34. L-3 Magnetrons. https://www.l3harris.com/all-capabilities/magnetrons.

  35. Frejdovich, I.A., Nevsky, P.V., Sakharov, V.P., Vorob’ev, M.Yu., Knapp, E.A., Trower, W.P., Yamada, H., Kleev, A., Alimov, A.S., Shvedunov, V.I., Chernousov, Yu.D., Shebolaev, I.V., Gavrish, Yu.N., and Nikolaev, V.M., Proc. 2006 IEEE Int. Vacuum Electronics Conference IVEC/IVESC, Monterey, CA, 2006, p. 307. https://doi.org/10.1109/IVELEC.2006.1666306

  36. Shvedunov, V.I., Alimov, A.S., Ermakov, A.N., Kamanin, A.N., Khankin, V.V., Kurilik, A.S., Ovchinnikova, L.Yu., Pakhomov, N.I., Shvedunov, N.V., Yurov, D.S., Shvedunov, I.V., and Simonov, A.S., Radiat. Phys. Chem., 2019, vol. 159, p. 95. https://doi.org/10.1016/j.radphyschem.2019.02.044

    Article  ADS  Google Scholar 

  37. Gycom. http://www.gycom.ru/products/pr1.html.

  38. Nezhevenko, O.A., Yakovlev, V.P., LaPointe, M.A., Kozyrev, E.V., Shchelkunov, S.V., and Hirshfield, J.L., Proc. IEEE Particle Accelerator Conference, Knoxville, T.N., 2005, vol. 2005, p. 1922. https://doi.org/10.1109/PAC.2005.1590958

  39. Faillace, L., Behtouei, M., Dolgashev, V.A., Spataro, B., Torrisi, G., and Variola, A., J. Phys.: Conf. Ser., 2020, vol. 1596, no. 1, p. 012022. https://doi.org/10.1088/1742-6596/1596/1/012022

    Article  Google Scholar 

  40. Tolkachev, A.A., Levitan, B.A., Solovjev, G.K., Vey-tsel, V.V., and Farber, V.E., IEEE Aerosp. Electron. Syst. Mag., 2000, vol. 15, no. 7, p. 25. https://doi.org/10.1109/62.854021

    Article  Google Scholar 

  41. Kumar, N., Singh, U., Singh, T.P., and Sinha, A.K., J. Fusion Energy, 2011, vol. 30, no. 4, p. 257. https://doi.org/10.1007/s10894-010-9373-0

    Article  ADS  Google Scholar 

  42. Thumm, M., Fusion Eng. Des., 2003, vols. 66–68, p. 69. https://doi.org/10.1016/S0920-3796(03)00132-7

    Article  Google Scholar 

  43. Choi, E.M., Marchewka, C., Mastovsky, I., Shapiro, M.A., Sirigiri, J.R., and Temkin, R.J., J. Phys.: Conf. Ser., 2005, vol. 25, no. 1, p. 1. https://doi.org/10.1088/1742-6596/25/1/001

    Article  ADS  Google Scholar 

  44. Kutsaev, S.V., Jacobson, B., Smirnov, A.Yu., Campese, T., Dolgashev, V.A., Goncharik, V., Harrison, M., Murokh, A., Nanni, E., Picard, J., Ruelas, M., and Schaub, S.C., Phys. Rev. Appl., 2019, vol. 11, no. 3, p. 034052. https://doi.org/10.1103/PhysRevApplied.11.034052

    Article  ADS  Google Scholar 

  45. Jacob, J., CERN Yellow Report CERN-2015-003, 2015, pp. 197–216. https://doi.org/10.5170/CERN-2015-003.197

  46. Formicone, G. and Custer, J., AIP Conf. Proc., 2019, vol. 2160, no. 1, p. 040010.

    Article  Google Scholar 

  47. Marchand, P., Proc. Int. Particle Accelerator Conference, IPAC’17, Copenhagen, 2017. https://doi.org/10.1063/1.5127690.

  48. Heid, O. and Hughes, T., Proc. 25th Int. Linear Accelerator Conference, LINAC2010, Tsukuba, 2011, p. 905.

  49. Smirnov, A.Y., Krasnov, A., Nikolskiy, K., Tikhomirova, N., Ivanov, E., Heid, O., and Hughes, T., Proc. 26th Int. Linear Accelerator Conference, LINAC2012, Tel Aviv, 2012, p. 672.

  50. 2.45 GHz Solid State Module. https://www.ec21.com/product-details/Solid-state Microwave-Generator-2450mhz–11198977.html.

  51. Agustsson, R., Boucher, S., and Kutsaev, S., US Patent WO2018222839A1, 2018.

  52. Agustsson, R., Boucher, S., and Kutsaev, S., US Patent WO2020061204A1, 2019.

  53. Derby, B. and Wallach, E.R., J. Mater. Sci., 1984, vol. 19, no. 10, pp. 3140–3148. https://doi.org/10.1007/BF00549797

    Article  ADS  Google Scholar 

  54. Grudiev, A. and Wuensch, W., Proc. 22nd Int. Conference, LINAC2004, Luebeck, 2004, p. 779.

  55. Syratchev, I., Schulte, D., Adli, E., and Taborelli, M., Proc. IEEE Particle Accelerator Conference PAC’07, Albuquerque, NM, 2007, p. 2194. https://doi.org/10.1109/PAC.2007.4441194

  56. Kutsaev, S.V., Agustsson, R., Arodzero, A., Boucher, S., Murokh, A., and Smirnov, A.Yu., Nucl. Instrum. Methods Phys. Res., Sect. B, 2019, vol. 459, p. 179. https://doi.org/10.1016/j.nimb.2019.08.029

    Article  Google Scholar 

  57. Pearce, R. and Liam, W., ITER Vacuum Handbook, ITER Org., 2019.

    Google Scholar 

  58. Hinchliffe, I. and Battaglia, M., Phys. Today, 2004, vol. 57, no. 9, p. 49. https://doi.org/10.1063/1.1809092

    Article  Google Scholar 

  59. Murayama, H. and Peskin, M.E., Annu. Rev. Nucl. Part. Sci., 1996, vol. 46, no. 1, p. 533. https://doi.org/10.1146/annurev.nucl.46.1.533

    Article  ADS  Google Scholar 

  60. Wilson, I., Phys. Rep., 2004, vols. 403–404, nos. 1–6, p. 365. https://doi.org/10.1016/j.physrep.2004.08.028

    Article  ADS  Google Scholar 

  61. Dal Forno, M., Dolgashev, V., Bowden, G., Clarke, C., Hogan, M., McCormick, D., Novokhatski, A., Spataro, B., Weathersby, S., and Tantawi, S.G., Phys. Rev. Accel. Beams, 2016, vol. 19, no. 1, p. 011301. https://doi.org/10.1103/PhysRevAccelBeams.19.011301

    Article  ADS  Google Scholar 

  62. Chou, P.J., Bowden, G.B., Copeland, M.R., Henke, H., Menegat, A., and Siemann, R.H., Proc. IEEE Particle Accelerator Conference PAC’97, Vancouver, 1997, vol. 1, p. 464. https://doi.org/10.1109/PAC.1997.749688

  63. Chou, P.J., Bowden, G.B., Copeland, M.R., Farvid, A., Kirby, R.E., Menegat, A., Pearson, C., Shere, L., Siemann, R.H., Spencer, J.E., and Whittum, D.H., AIP Conf. Proc., 2009, vol. 398, no. 1, p. 501. https://doi.org/10.1063/1.53064

    Article  ADS  Google Scholar 

  64. Whitehouse, D.J., Meas. Sci. Technol., 1997, vol. 8, no. 9, p. 955. https://doi.org/10.1088/0957-0233/8/9/002

    Article  ADS  Google Scholar 

  65. Smirnov, A.V., Agustsson, R., Berry, R., Boucher, S., Chen, Y., Kutsaev, S., and O’Shea, F., Nucl. Instrum. Methods Phys. Res., Sect. A, 2020, vol. 953, p. 163160. https://doi.org/10.1016/j.nima.2019.163160

    Article  Google Scholar 

  66. Langeveld, W.G.J., Gozani, T., Ryge, P., Sinha, S., Shaw, T., and Strellis, D., AIP Conf. Proc., 2013, vol. 1525, p. 690. https://doi.org/10.1063/1.4802416

    Article  ADS  Google Scholar 

  67. Kluchevskaia, Y.D. and Polozov, S.M., Proc. 20th Int. Workshop on Beam Dynamics and Optimization, BDO’14, St. Petersburg, 2014, p. 86. https://doi.org/10.1109/BDO.2014.6890033

  68. Zha, H. and Grudiev, A., Phys. Rev. Accel. Beams, 2017, vol. 20, p. 042001. https://doi.org/10.1103/PhysRevAccelBeams.20.042001

    Article  ADS  Google Scholar 

  69. Zha, H., Dolgashev, V., and Grudiev, A., Proc. 6th Int. Particle Accelerator Conference IPAC’15, Richmond, VA, 2015, p. 2147. https://doi.org/10.18429/JACoW-IPAC2015-TUPTY054

  70. EDM Intelligent Solutions. https://www.edmdept.com /manufacturing-services/.

  71. Vanderauwera, W., Garzon, M., Aerts, T., Klocke, F., and Lauwers, B., Proc. 8th Int. Conference on Multi-Material Micro Manufacture, Oyonnax, 2010, p. 285. https://doi.org/10.3850/978-981-07-0319-6_242

  72. Shanahan, J., Trends in Micro Machining Technologies, 2004. https://www.makino.com/resources/content-library/article/archive/trends-in-micromachining-technologies/315.

  73. Howard, S. and Starovoitova, V.N., Appl. Radiat. Isot., 2015, vol. 96, p. 162. https://doi.org/10.1016/j.apradiso.2014.12.003

    Article  Google Scholar 

  74. Whitham, K., Anamkath, H., Evans, K., Lyons, S., Palmer, D., Miller, R., Trea, P., and Zante, T., Proc. 1992 Linear Accelerator Conference, Ottawa, 1992, p. 618.

  75. Bacci, A., Alesini, D., Antici, P., Bellaveglia, M., Boni, R., Chiadroni, E., Cianchi, A., Curatolo, C., Di Pirro, G., Esposito, A., Ferrario, M., Gallo, A., Gatti, G., Ghigo, A., Migliorati, M., et al., J. Appl. Phys., 2013, vol. 113, no. 19, p. 194508. https://doi.org/10.1063/1.4805071

    Article  ADS  Google Scholar 

  76. Dolgashev, V.A., Proc. 2nd European Advanced Accelerator Concepts Workshop (EAAC 2015), Isola d’Elba, 2015. https://agenda.infn.it/event/8146/contributions/ 71603/attachments/51963/61378/Dolgashev_ EAAC2012_High_gradient_metallic_structures_final _14Sep2015. pdf.

  77. Dolgashev, V.A., Faillace, L., Higashi, Y., Marcelli, A., Spataro, B., and Bonifazi, R., J. Instrum., 2020, vol. 15, no. 1, p. P01029. https://doi.org/10.1088/1748-0221/15/01/P01029

    Article  Google Scholar 

  78. Döbert, S., Proc. Int. Power Modulator Symposium and High Voltage Workshop, San Francisco, CA, 2004, p. 60. https://doi.org/10.1109/MODSYM.2004.1433506

  79. Kovermann, J.W., PhD Thesis, Aachen: Rheinisch-Westfälische Technische Hochschule Aachen, 2010.

  80. Kutsaev, S.V., Agustsson, R., Boucher, S., Fischer, R., Murokh, A., Mustapha, B., Nassiri, A., Ostroumov, P.N., Plastun, A., Savin, E., and Smirnov, A.Yu., Phys. Rev. Accel. Beams, 2017, vol. 20, no. 12, p. 120401. https://doi.org/10.1103/PhysRevAccelBeams.20.120401

    Article  ADS  Google Scholar 

  81. Kutsaev, S.V., Agustsson, R., Berry, R., Borland, M., Chao, D., Chimalpopoca, O., Gavryushkin, D., Gusarova, M., Hartzell, J., Meyer, D., Nassiri, A., Smir-nov, A.Yu., Smith, T., Sun, Y., Verma, A., et al., Rev. Sci. Instrum., 2020, vol. 91, no. 4, p. 044701. https://doi.org/10.1063/5.0002765

    Article  Google Scholar 

  82. Othman, M.A.K., Picard, J., Schaub, S., Dolgashev, V.A., Lewis, S.M., Neilson, J., Haase, A., Jawla, S., Spataro, B., Temkin, R.J., Tantawi, S., and Nanni, E.A., Appl. Phys. Lett., 2020, vol. 117, no. 7, p. 073502. https://doi.org/10.1063/5.0011397

    Article  ADS  Google Scholar 

  83. Dolgashev, V., Tantawi, S., Higashi, Y., and Spataro, B., Appl. Phys. Lett., 2010, vol. 97, no. 17, p. 171501. https://doi.org/10.1063/1.3505339

    Article  ADS  Google Scholar 

  84. Kilpatrick, W.D., Rev. Sci. Instrum., 1957, vol. 28, no. 10, p. 824. https://doi.org/10.1063/1.1715731

    Article  ADS  Google Scholar 

  85. Peter, W., Faehl, R.J., Kadish, A., and Thode, L.E., IEEE Trans. Nucl. Sci., 1983, vol. 30, no. 4, p. 3454. https://doi.org/10.1109/TNS.1983.4336689

    Article  ADS  Google Scholar 

  86. Dolgashev, V.A., Proc. IEEE Particle Accelerator Conference PAC’03, Portland, OR, 2003, vol. 2, p. 1267. https://doi.org/10.1109/PAC.2003.1289674

  87. Kubiak, T., Br. J. Radiol., 2016, vol. 89, no. 1066, p. 20150275. https://doi.org/10.1259/bjr.20150275

    Article  Google Scholar 

  88. Grudiev, A. and Wuensch, W., Phys. Rev. Accel. Beams, 2009, vol. 12, p. 102001. https://doi.org/10.1103/PhysRevSTAB.12.102001

    Article  ADS  Google Scholar 

  89. Degiovanni, A., Bonomi, R., Garlasché, M., Verdú-Andrés, S., Wegner, R., and Amaldi, U., Nucl. Instrum. Methods Phys. Res., Sect. A, 2018, vol. 890, p. 1. https://doi.org/10.1016/j.nima.2018.01.079

    Article  Google Scholar 

  90. Laurent, L., Tantawi, S., Dolgashev, V., Nantista, C., Higashi, Y., Aicheler, M., Heikkinen, S., and Wuensch, W., Phys. Rev. Spec. Top.–Accel. Beams, 2011, vol. 14, no. 4, p. 041001. https://doi.org/10.1103/PhysRevSTAB.14.041001

    Article  ADS  Google Scholar 

  91. Pritzkau, D.P., RF Pulsed Heating, Stanford Univ., 2001.

    Google Scholar 

  92. Gamzina, D., Kozina, M., Mehta, A., Nanni, E.A., Tantawi, S., Welander, P.B., Horn, T., and Ledford, C., Proc. 2019 Int. Vacuum Electronics Conference, IVEC 2019, Busan, 2019, p. 1. https://doi.org/10.1109/IVEC.2019.87447501

  93. Turner, R.B. and Ungrin, J., Proc. 1981 Linear Accelerator Conference, Santa Fe, NM, 1981, p. 77.

  94. Hansborough, L.D., Clark, W.L., DePaula, R.A., Martinez, F.A., Roybal, P.L., Wilkerson, L.C., and Young, L.M., Nucl. Instrum. Methods Phys. Res., Sect. B, 1987, vols. 24–25, part 2, p. 863. https://doi.org/10.1016/S0168-583X(87)80266-5

    Article  Google Scholar 

  95. Singh, R., Pant, K.K., Lal, S., Yadav, D.P., Garg, S.R., Raghuvanshi, V.K., and Mundra, G., J. Phys.: Conf. Ser., 2012, vol. 390, no. 1, p. 012025. https://doi.org/10.1088/1742-6596/390/1/012025

    Article  Google Scholar 

  96. Simakov, E.I., Dolgashev, V.A., and Tantawi, S.G., Nucl. Instrum. Methods Phys. Res., Sect. A, 2018, vol. 907, p. 221. https://doi.org/10.1016/j.nima.2018.02.085

    Article  Google Scholar 

  97. Węglowski, M.S., Błacha, S., and Phillips, A., Vacuum, 2016, vol. 130, p. 72. https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  ADS  Google Scholar 

  98. Polyakov, V.A. and Shchedrin, I.S., Proc. 4th European Particle Accelerator Conference, EPAC’94, London, 1994, p. 1489.

  99. Gusarova, M.A., Kaminsky, V.I., Kravchuk, L.V., Kutsaev, S.V., Lalayan, M.V., Sobenin, N.P., and Tara-sov, S.G., Nucl. Instrum. Methods Phys. Res., Sect. A, 2009, vol. 599, no. 1, p. 100. https://doi.org/10.1016/j.nima.2008.09.047

    Article  Google Scholar 

  100. Engelberg, E.Z., Yashar, A.B., Ashkenazy, Y., Assaf, M., and Popov, I., Phys. Rev. Accel. Beams, 2019, vol. 22, no. 8, p. 083501. https://doi.org/10.1103/PhysRevAccelBeams.22.083501

    Article  ADS  Google Scholar 

  101. Callister, W.D. and Rethwisch, D.G., Materials Science and Engineering: An Introduction, New York: Wiley, 2018.

    Google Scholar 

  102. Guo, Y.B., Numerical Simulations—Applications, Examples and Theory, InTech, 2011.

    Google Scholar 

  103. Curtiss-Wright Laser Peening. https://cwst.com/laser-peening/.

  104. Bohm, M., Kaufman, J., Brajer, J., and Rostohar, D., MM Sci. J., 2019, vol. 2019, p. 3643. https://doi.org/10.17973/MMSJ.2019_12_2019115

    Article  Google Scholar 

  105. Nasr, M., Nanni, E., Breidenbach, M., Weathersby, S., Oriunno, M., and Tantawi, S., 2020. arXiv:2011.00391.

  106. Saversky, A.J. and Shchedrin, I.S., Proc. IEEE Particle Accelerator Conference PAC'93, Washington, DC, 1993, vol. 2, p. 1030.

  107. Benard, J., Helmy El Minyawi, N., and Nguyen, T.V., Rev. Phys. Appl., 1978, vol. 13, no. 10, p. 483. doi ffhttps://doi.org/10.1051/rphysap:019780013010048300ff.ffjpa-00244478f

  108. Rosenzweig, J.B., Cahill, A., Dolgashev, V., Emma, C., Fukasawa, A., Li, R., Limborg, C., Maxson, J., Musumeci, P., Nause, A., Pakter, R., Pompili, R., Roussel, R., Spataro, B., and Tantawi, S., Phys. Rev. Accel. Beams, 2019, vol. 22, no. 2, p. 023403. https://doi.org/10.1103/PhysRevAccelBeams.22.023403

    Article  ADS  Google Scholar 

  109. Cahill, A.D., Rosenzweig, J.B., Dolgashev, V.A., Tantawi, S.G., and Weathersby, S., Phys. Rev. Accel. Beams, 2018, vol. 21, no. 10, p. 102002. https://doi.org/10.1103/PhysRevAccelBeams.21.102002

    Article  ADS  Google Scholar 

  110. Kelliher, M.G., Nỳgard, J.C., and Ghle, A.J., IRE Trans. Nucl. Sci., 1956, vol. 3, no. 3, p. 1. https://doi.org/10.1109/TNS2.1956.4315527

    Article  Google Scholar 

  111. Milovanov, O.S. and Sobenin, N.P., Tekhnika sverkhvysokikh chastot (Microwave Technique), Moscow: Atomizdat, 1980.

  112. Kutsaev, S.V., Eur. Phys. J. Plus, 2021, vol. 136, no. 4, p. 446. https://doi.org/10.1140/epjp/s13360-021-01312-3

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to thank his colleagues from RadiaBeam Technologies for their help in preparing the material: S. Boucher, R. Agustsson, P. Carriere, A. Murokh, and A.Yu. Smirnov. The author also thanks V.A. Dolgashev from the SLAC Stanford Accelerator Laboratory, United States for much advice on the subject of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kutsaev.

Ethics declarations

The material of this review is based on information published in open sources and reflects the author’s personal view of current trends in accelerator development. Some borrowed drawings and photographs taken from open sources are used here. Figures whose sources are not given in the text belong to the author and RadiaBeam Technologies (https://radiabeam.com).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsaev, S.V. Novel Technologies for Compact Electron Linear Accelerators (Review). Instrum Exp Tech 64, 641–656 (2021). https://doi.org/10.1134/S0020441221050079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221050079

Navigation