Skip to main content
Log in

Flight Calibration of the Photodetector in the TUS Detector

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A technique is proposed for carrying out flight calibration of a photomultiplier tubes (PMTs) of the photodetector in the orbital TUS detector of ultra-high-energy cosmic rays in the absence of a calibration signal. The new technique consists in calculating two statistical characteristics of digitized signals from detected events (their mean value A and variance \(\sigma _{A}^{2}\)) and constructing the linear approximation \(\sigma _{A}^{2}\)(A) for stationary signals. This technique has been tested in a laboratory experiment with a photodetector module, which is identical to the modules used in the detector. As a result, the gains of most photodetector channels of the TUS detector have been estimated again and the changes that occurred (in particular, the “aging effect”) have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. We will use index f (fluctuation) to distinguish the gain obtained in this way from the direct calibration (1).

REFERENCES

  1. Adams, J.H., Jr., Ahmad, S., Albert, J.-N., Allard, D., Ambrosio, M., Anchordoqui, L., Anzalone, A., Arai, Y., Aramo, C., Asano, K., Ave, M., Barrillon, P., Batsch, T., Bayer, J., Belenguer, T., et al., Astropart. Phys., 2013, vol. 44, p. 76. https://doi.org/10.1016/j.astropartphys.2013.01.008

    Article  ADS  Google Scholar 

  2. Benson, R. and Linsley, J., Proc. 17th Int. Cosmic Ray Conference, Paris, 1981, vol. 8, p. 145.

  3. Khrenov, B.A., Panasyuk, M.I., and Alexandrov, V.V., Am. Inst. Phys. Conf. Ser., 2001, vol. 566, p. 57.

    ADS  Google Scholar 

  4. Khrenov, B.A., Nucl. Phys. B, Proc. Suppl., 2002, vol. 113, p. 115. https://doi.org/10.1016/S0920-5632(02)01830-3

    Article  ADS  Google Scholar 

  5. Abrashkin, V., Alexandrov, V., Arakcheev, Y., Bitkin, E., Cordero, A., Eremin, S., Finger, M., Garipov, G., Grebenyuk, V., Kalmykov, N., Khrenov, B., Koval, V., Martinez, O., Matyushkin, A., Moreno, E., et al., Adv. Space Res., 2006, vol. 37, p. 1876. https://doi.org/10.1016/j.asr.2005.05.095

    Article  ADS  Google Scholar 

  6. Hamamatsu R1463 Photomultiplier Tube Datasheet. https://www.hamamatsu.com/resources/pdf/etd/R1463_ TPMH1349E.pdf.

  7. Klimov, P.A., Panasyuk, M.I., Khrenov, B.A., Garipov, G.K., Kalmykov, N.N., Petrov, V.L., Sharakin, S.A., Shirokov, A.V., Yashin, I.V., Zotov, M.Y., Biktemerova, S.V., Grinyuk, A.A., Grebenyuk, V.M., Lavrova, M.V., Tkachev, L.G., et al., Space Sci. Rev., 2017, vol. 8, p. 1. https://doi.org/10.1007/s11214-017-0403-3

    Article  Google Scholar 

  8. Khrenov, B.A., Klimov, P.A., Panasyuk, M.I., Sha-rakin, S.A., Tkachev, L.G., Zotov, M.Yu., Biktemerova, S.V., Botvinko, A.A., Chirskaya, N.P., Eremeev, V.E., Garipov, G.K., Grebenyuk, V.M., Grinyuk, A.A., Jeong, S., Kalmykov, N.N., et al., J. Cosmol. Astropart. Phys., 2017, vol. 2017, p. 006. https://doi.org/10.1088/1475-7516/2017/09/006

  9. Klimov, P., Khrenov, B., Kaznacheeva, M., Garipov, G., Panasyuk, M., Petrov, V., Sharakin, S., Shirokov, A., Yashin, I., Zotov, M., Grebenyuk, V., Grinyuk, A., Lavrova, M., Tkachenko, A., Tkachev, L., et al., Remote Sens., 2019, vol. 11, no. 20, p. 2449. https://doi.org/10.3390/rs11202449

    Article  ADS  Google Scholar 

  10. Khrenov, B.A., Garipov, G.K., Kaznacheeva, M.A., Klimov, P.A., Panasyuk, M.I., Petrov, V.L., Sharakin, S.A., Shirokov, A.V., Yashin, I.V., Zotov, M.Yu., Grinyuk, A.A., Grebenyuk, V.M., Lavrova, M.V., Tkachev, L.G., Tkachenko, A.V., et al., J. Cosmol. Astropart. Phys., 2020, vol. 2020, p. 033. https://doi.org/10.1088/1475-7516/2020/03/033

Download references

Funding

This work was supported by the State Corporation Roscosmos and the Fundamental and Applied Space Research Interdisciplinary Scientific and Educational School of the Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Klimov.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimov, P.A., Sigaeva, K.F. & Sharakin, S.A. Flight Calibration of the Photodetector in the TUS Detector. Instrum Exp Tech 64, 450–455 (2021). https://doi.org/10.1134/S0020441221030192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221030192

Navigation