Skip to main content
Log in

A Microwave Nonreciprocal Notch Filter Tunable by a Surface Acoustic Wave in Dynamic Magnonic Crystals

  • ELECTRONICS AND RADIO ENGINEERING
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of using a dynamic magnonic crystal, which is created by a surface acoustic wave (SAW) in the structure of a film of yttrium iron garnet on a gallium gadolinium garnet substrate, for the development of a tunable nonreciprocal microwave filter are presented. A filter prototype that operates in the range of 3600–4200 MHz at a magnetic bias field of 640 Oe was developed and its main characteristics were measured. At a SAW frequency of 41 MHz and a power of 30 mW, the rejection depth was 23 dB. A SAW-frequency change by 1 MHz shifted the rejection frequency by ~7 MHz. The inversion of the signal-propagation direction in the device resulted in a shift of the rejection frequency by the value of the SAW frequency. The possibilities of the further improvement of the parameters of this device are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Morgan, D.P., Surface-Wave Devices for Signal Processing, Amsterdam: North Holland, 1985.

    Google Scholar 

  2. Ruppel, C.C.W. and Fjeldly, T.A., Advances in Surface Acoustic Wave Technology, Systems and Applications, World Scientific Publ., 2001, vol. 2.

    Book  Google Scholar 

  3. Gulyaev, Yu.V. and Hickernell, F.S., Acoust. Phys., 2005, vol. 51, no. 1, p. 81.

    Article  ADS  Google Scholar 

  4. Campbell, C., Surface Acoustic Wave Devices and their Signal Processing Applications, Elsevier, 2012.

    Google Scholar 

  5. Morgenthaler, F.R., Microwave J., 1982, vol. 25, p. 83.

    ADS  Google Scholar 

  6. Ishak, W.S., Proc. IEEE, 1988, vol. 76, no. 2, p. 171.

    Article  ADS  Google Scholar 

  7. Serga, A.A., Chumak, A.V., and Hillebrands, B., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 26, p. 264002.

    Article  ADS  Google Scholar 

  8. Khitun, A., Bao, M., and Wang, K.L., J. Phys. D: Appl. Phys., 2010, vol. 43, no. 26, p. 264005.

    Article  ADS  Google Scholar 

  9. Chumak, A.V., Serga, A.A., and Hillebrands, B., Nat. Commun., 2014, vol. 5, p. 4700.

    Article  ADS  Google Scholar 

  10. Acevedo, A., Gomez-Arista, I., Kolokoltsev, O., Sánchez, M.M., and Guzmán, R.C., Electron. Lett., 2018, vol. 54, no. 7, p. 418.

    Article  Google Scholar 

  11. Chumak, A.V., Vasyuchka, V.I., Serga, A.A., and Hillebrands, B., Nat. Phys., 2015, vol. 11, no. 6, p. 453.

    Article  Google Scholar 

  12. Chumak, A.V., Serga, A.A., and Hillebrands, B., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 24, p. 244001.

    Article  ADS  Google Scholar 

  13. Krawczyk, M. and Grundler, D., J. Phys.: Condens. Matter, 2014, vol. 26, no. 12, p. 123202.

    Google Scholar 

  14. Puszkarski, H. and Krawczyk, M., Phys. Lett. A, 2001, vol. 282, p. 106.

    Article  ADS  Google Scholar 

  15. Gulyaev, Yu.V., Nikitov, S.A., Zhivotovskii, L.V., Klimov, A.A., Tailhades, Ph., Presmanes, L., Bonningue, C., Tsai, C.S., Vysotskii, S.L., and Filimonov, Yu.A., JETP Lett., 2003, vol. 77, no. 10, p. 567.

    Article  ADS  Google Scholar 

  16. Gallardo, R.A., Schneider, T., Roldán-Molina, A., Langer, M., Fassbender, J., Lenz, K., Lindner, J., and Landeros, P., Phys. Rev. B, 2018, vol. 97, no. 14, p. 144405.

    Article  ADS  Google Scholar 

  17. Sadovnikov, A.V., Odintsov, S.A., Beginin, E.N., Grachev, A.A., Gubanov, V.A., Sheshukova, S.E., Sharaevskii, Yu.P., and Nikitov, S.A., JETP Lett., 2018, vol. 107, no. 1, p. 25.

    Article  ADS  Google Scholar 

  18. Chumak, A.V., Neumann, T., Serga, A.A., Hillebrands, B., and Kostylev, M.P., J. Phys. D: Appl. Phys., 2009, vol. 42, no. 20, p. 205005.

    Article  ADS  Google Scholar 

  19. Nikitin, A.A., Ustinov, A.B., Semenov, A.A., Chumak, A.V., Serga, A.A., Vasyuchka, V.I., Hillebrands, B., Landeranta, E., and Kalinikos, B.A., Appl. Phys. Lett., 2015, vol. 106, no. 10, p. 102405.

    Article  ADS  Google Scholar 

  20. Kryshtal, R.G. and Medved, A.V., Appl. Phys. Lett., 2012, vol. 100, no. 19, p. 192410.

    Article  ADS  Google Scholar 

  21. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2015, vol. 395, p. 180.

    Article  ADS  Google Scholar 

  22. Kryshtal, R.G. and Medved, A.V., J. Magn. Magn. Mater., 2017, vol. 426, p. 666.

    Article  ADS  Google Scholar 

  23. Kryshtal, R.G. and Medved, A.V., J. Phys. D: Appl. Phys., 2017, vol. 50, no. 49, p. 495004.

    Article  ADS  Google Scholar 

  24. Mednikov, A.M., Popkov, A.F., Anisimkin, V.I., Nam, B.P., Petrov, A.A., Spivakov, A.A., and He, A.S., Pis’ma Zh. Eksp. Teor. Fiz., 1981, vol. 33, p. 632.

    Google Scholar 

  25. Popkov, A.F., Fiz. Met. Metalloved., 1985, vol. 59, p. 463.

    Google Scholar 

  26. Hanna, S.M., Murphy, G.P., Sabetfakhri, K., and Stratakis, K., Proc. 1990 IEEE Ultrasonics Symposium, Honolulu, HI, 1990, p. 209.

  27. Kryshtal, R.G., Medved, A.V., and Popkov, A.F., Radiotekh. Electron., 1994, no. 4, p. 647.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Medved.

Additional information

Translated by A. Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryshtal, R.G., Kundin, A.P. & Medved, A.V. A Microwave Nonreciprocal Notch Filter Tunable by a Surface Acoustic Wave in Dynamic Magnonic Crystals. Instrum Exp Tech 62, 42–46 (2019). https://doi.org/10.1134/S0020441219010123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441219010123

Navigation