Skip to main content
Log in

A compact bending device for in-situ three-point bending tests under laser scanning confocal microscope

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

In-situ testing methods are used to investigate the real-time changing process of materials under different mechanical tests. This paper describes a miniature in-situ three-point bending device, which is compatible with the laser scanning confocal microscope. This device integrates a servo motor, a two-stage worm gears reducer with large reduction ratio and two small lead ball screws. It can realize quasi-static loading mode with a wide rate range from 0.1 µm/s to 0.1 mm/s. The microstructure of the specimen can be observed dynamically during the three-point bending test combined with the force-deflection curve. A calibration method was introduced to calibrate the flexibility of the developed device. The bending experiments were carried out for several different materials with known elastic modulus to verify the feasibility of the calibration method. Finally, the in-situ three-point bending test of red copper was performed to verify the function of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, J.G., Wang, X.S., and Meng, X.K., Mater. Trans., 2007, vol. 48, no. 10, p. 2795. doi 10.2320/matertrans.MRP2007069

    Article  Google Scholar 

  2. Malachevsky, M.T., D’Ovidio, C.A., and Esparza, D.A., Physica C, 2002, vol. 372–376, Part 2, p. 935. doi 10.1016/S0921-4534(02)00937-1

    Article  Google Scholar 

  3. Jiang, Z., Lu, F.X., Tang, W.Z., Wang, S.G., Tong, Y.M., Huang, T.B., and Liu, J.M., Diam. Relat. Mater., 2000, vol. 9, nos. 9–10, p. 1734. doi 10.1016/S0925-9635(00)00290-9

    Article  ADS  Google Scholar 

  4. Zhang, H. and Li, D.Y., Surf. Coat. Tech., 2002, vol. 155, nos. 2–3, p. 190. doi 10.1016/S0257-8972(02)00059-2

    Article  Google Scholar 

  5. Boucher, E., Folkers, J.P., Hervet, H., Leger, L., and Creton, C., Macromolecules, 1996, vol. 29, no. 2, p. 774. doi 10.1021/ma9509422

    Article  ADS  Google Scholar 

  6. Wang, M., Wang, J., Feng, H., and Ke, W., Mat. Sci. Eng. A, 2012, vol. 558, p. 649. doi 10.1016/j.msea. 2012.08.069

    Article  Google Scholar 

  7. Lin, T., Jia, D., He, P., and Wang, M., Mat. Sci. Eng. A, 2010, vol. 527, no. 9, p. 2404. doi 10.1016/j.msea. 2009.12.004

    Article  Google Scholar 

  8. Mao, S.C., Han, X.D., Tian, Y.B., Luo, J.F., Zhang, Z., Ji, Y., and Wu, M.H., Mat. Sci. Eng. A, 2008, vol. 498, nos. 1–2, p. 278. doi 10.1016/j.msea.2008.07.072

    Article  Google Scholar 

  9. Sha, J.B. and Yip, T.H., Mat. Sci. Eng. A, 2004, vol. 386, nos. 1–2, p. 91. doi 10.1016/j.msea.2004.07.034

    Article  Google Scholar 

  10. Fist, N., Dinan, J., Stadelmann, R., and Orlovskaya, N., Adv. Appl. Ceram., 2012, vol. 111, no. 7, p. 433. doi 10.1179/1743676111Y.0000000069

    Article  Google Scholar 

  11. Chen, Y., Xu, H., Kibble, K.A., and Hall, R., Mater. Design., 2000, vol. 21, no. 5, p. 453. doi 10.1016/S0261-3069(00)00034-0

    Article  Google Scholar 

  12. Mušálek, R., Kovárík, O., and Matejícek, J., Surf. Coat. Tech., 2010, vol. 205, no. 7, p. 1807. doi 10.1016/j.surfcoat. 2010.03.064

    Article  Google Scholar 

  13. Baird, J.C., Li, B., Parast, S.Y., Horstemeyer, S.J., Hector, L.G., Wang, P.T., and Horstemeyer, M.F., Scr. Mater., 2012, vol. 67, no. 5, p. 471. doi 10.1016/j.scriptamat. 2012.06.007

    Article  Google Scholar 

  14. Zhang, Y., Yang, R., George, S.M., and Lee, Y.C., Thin Solid Films, 2011, vol. 520, no. 1, p. 251. doi 10.1016/j.tsf.2011.07.056

    Article  ADS  Google Scholar 

  15. Zu, G., Song, B., Zhong, Z., Li, X., Mu, Y., and Yao, G., J. Alloy. Compd., 2012, vol. 540, p. 275. doi 10.1016/j.jallcom.2012.06.079

    Article  Google Scholar 

  16. Davidkov, A., Jain, M.K., Petrov, R.H., Wilkinson, D.S., and Mishra, R.K., Mat. Sci. Eng. A, 2012, vol. 550, p. 395. doi 10.1016/j.msea.2012.04.093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhao, H., Hu, X. et al. A compact bending device for in-situ three-point bending tests under laser scanning confocal microscope. Instrum Exp Tech 59, 762–767 (2016). https://doi.org/10.1134/S0020441216040060

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441216040060

Navigation